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Content outline
Q Intelligent Data Mining: introduction and overview of  Intelligent Data

Mining Techniques (20 min)
Q Selected Data Mining Techniques: principles and examples

– undirected DM-techniques:
Q Market Basket Analysis (MBA) - (20 min)
Q Link Analysis and Scale-Free Networks (10 min)
Q Automatic Cluster Detection and Fuzzy Systems:

Clustering the World Bank Data (20 min)
– directed DM-techniques:

Q Internal Knowledge Representation in BP-Networks (20 min)
Q Modular Networks, Sensitivity Analysis  and Feature Selection (20 min)
Q Neural Networks and Decision Trees: Students´Questionnaire (20 min)
Q Genetic Algorithms and BP-networks: Generating Melodies (10 min)

Q Conclusions, Questions + Answers (10 min)
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Intelligent Data Mining: References
Q M. J. A. Berry, G. Linoff: Data Mining Techniques for Marketing, Sales,

and Customer Support, John Wiley & Sons, 1997
Q M. J. A. Berry, G. Linoff: Mastering Data Mining, John Wiley & Sons,

2000
Q J. Han, M. Kamber: Data Mining: Concepts and Techniques, Morgan

Kaufmann Publishers, 2001
Q D. Hand, H. Mannila, P. Smyth: Principles of Data Mining, The MIT Press,

2001
Q D. Pyle: Data Preparation for Data Mining, Morgan Kaufmann Press, 1999
Q I. H. Witten, E. Frank: Data Mining: practical machine learning tools and

techniques with Java implementations, Morgan Kaufmann Publishers, 2000
http://www.mkp.com/datamining

  http://www.cs.waikato.ac.nz/ml/weka
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What is Data Mining?
Q discovering patterns in data

– discovered patterns should be meaningful
– should lead to some advantage, e.g. economic, …
– allows to make non-trivial predictions on new data

Q the data is present in substantial quantities
Q automatic or semi-automatic process
Q two extremes for the form of discovered patterns:

– black box - e.g. neural networks
– transparent box - more structured, capture the

decision structure in an explicit way
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Building models for the data

Q Classification model:
– assigns an existing classification to new records

Q Predictive model
– Time-series model

Q Clustering model

Model
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Confidence level
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Data Analysis:
Influence of other disciplines

Q statistics
Q sampling
Q regression analysis

– linear regression
Q correlation analysis

Q memory-based reasoning
Q link analysis
Q genetic algorithms and

neural networks

£ interpret observations
£ reduce the size of data
£ inter- and extrapolate

observations
– fit a line to observed data

£ mutual occurrence of
observations

£ directly from AI
£ graph theory
£ model biological processes
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Intelligent DM-Techniques: an overview

Q Market Basket Analysis (MBA)
Q Memory-Based Reasoning (MBR)
Q Automatic Cluster Detection
Q Fuzzy Systems (FS)
Q Link Analysis
Q Decision Trees
Q Artificial Neural Networks (ANN)
Q Genetic Algorithms (GA)
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Q Analyses in the retail industry:

What items occur together in a “basket”?

Q Results:
– expressed as rules
– highly actionable

Q Applications:
– planning store layouts
– offering coupons, limiting specials
– bundling products

Market Basket Analysis (MBA)
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Memory-Based Reasoning (MBR)

Look for the nearest “known” neighbor to
classify or predict value!

Q applicable to virtually any data
Q new instances learned by adding them to the data set
Q distance to neighbors estimates the correctness of the

results
Q Key elements in MBR:

– distance function - to find nearest neighbors
– combination function - combine values at nearest

neighbors to classify or predict
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Link Analysis
Q Goals:

– find patterns in relationships between records
– visualize the links

Q Application areas:
– telecommunications
– law enforcement - clues about crimes are linked

together to solve them
– marketing - relationships between customers
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Q Goal:

   Find previously unknown similarities in the data!

Q Build models that find data records similar
to each other

Q Good as an initial analysis of the data
Q Undirected data mining

Automatic Cluster Detection
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Decision Trees and Rule Induction

    Divide the data into disjoint subsets
characterized by simple rules!

Q Directed data mining (classification)
Q Explainable rules applicable directly to new

records
Q Techniques:

– Classification And Regression Trees (CART)
– Chi-squared Automatic Induction (CHAID)
– C4.5
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Artificial Neural Networks (ANN)

  Detect patterns in the data in a way “similar” to
human thinking!

Q Directed data mining (classification and
prediction)

Q Applicable also to undirected data mining (SOMs)
Q Two major drawbacks:

– difficulty in understanding the models they produce
– sensitivity to the format of incoming data
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Genetic Algorithms (GA)
Apply genetics and natural selection to find
optimal parameters of a predictive function!

Q GA use “genetic” operators to evolve successive
generations of solutions:
– selection
– crossover
– mutation

Q Best candidates “survive” to further generations
until convergence is achieved

Q Directed data mining
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On-Line Analytic Processing (OLAP)

Q an important tool for extracting and presenting
information

Q facilitates understanding of the data and important
patterns inside it

Q a way of presenting relational data to users
Q multi-dimensional databases (MDDs):

– a representation of data
– allows users to drill down into the data and understand

various important summarizations
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Q Analyses in the retail industry:

What items occur together in a “basket”?

Q Results:
– expressed as rules
– highly actionable

Q Applications:
– planning store layouts
– offering coupons, limiting specials
– bundling products

Market Basket Analysis (MBA)
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Association rules
How do the products relate one to each other?

Q Association rules should be:
– easy to understand: once the pattern is found, it is easy to

justify it
– useful: contain actionable information leading to other

interventions

Q Association rules should not be:
– trivial: results are already known by anyone familiar with

the business
– inexplicable: seem to have no explanation and do not

suggest any action
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MBA to compare stores
Q Virtual items:

– specify which group the transaction comes from
– do not correspond to a product or service

Q Comparison between new and existing stores:
1 Gather data for a specific period from store openings
2 Gather about the same amount of data from existing

stores
3 Apply MBA to find association rules in each set
4 Consider especially association rules containing the

virtual items
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MBA - how does it work?
Q Items - products or service offerings
Q Transactions contain one or more items
Q Co-occurrence table

– indicates the number of times that any two
items co-occur in a transaction (i.e. these
products were purchased together)

– values along the diagonal represent the number
of transactions containing just that one item
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MBA - example
Q Grocery transactions:

 Customer     Items
       1      bread, butter
       2      milk, bread, butter
       3      bread, coffee
       4      bread, butter, coffee
       5          coffee, butter

Q Co-occurrence of products:

bread   butter   milk   coffee
 bread     4          3          1        2
 butter        3          4          1        2
 milk          1          1          1        0
 coffee        2         2           0        3

Sales patterns apparent from the co-occurrence table:

    Milk is never purchased with coffee.
    Bread and butter are likely to be purchased together.
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Q Rule:      IF Condition THEN Result.
          (  Rule_r :  IF  Item_i  THEN  Item_j . )

Q Questions:
– How good are the found association rules?

Q support
Q confidence
Q improvement

– How to find association rules automatically?

MBA - Association rules
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Support and confidence
Support:  How frequently can the rule be applied?

Confidence:  How much can we rely on the result of
  the rule?

Nr_of_Transactions_containing_i_and_j

Number_of_all_Transactions

Nr_of_Transactions_containing_i

Nr_of_Transactions_containing_i_and_j
• 100 %

• 100 %Support(Rule_r) = 

Confidence(Rule_r) = 
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Support and confidence - example

Rule 1:   If  a customer purchases  bread  then  the
      customer also purchases  butter.

 Rule 2:   If  a customer purchases  coffee  then  the
      customer also purchases  butter.

Support ( Rule_1 )  =  3 / 5  •  100 %  =  60 % 

Confidence ( Rule_1 )  =  3 / 4  •  100 %  =  75 %

Support ( Rule_2 )  =  2 / 5  •  100 %  =  40 %

Confidence ( Rule_2 )  =  2 / 3  •  100 %  =  66 %
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Improvement of a rule

p(i_and_j)
 p(i) • p(j)

Improvement(Rule_r) = 

Improvement:  How much is a rule better at predict-
    ing the result than just assuming it?

If  Improvement < 1:
Q rule is worse at predicting the result than random chance
Q NEGATING the result might produce a better rule

  IF  Condition  THEN  NOT  Result.
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Improvement of a rule - example

 Rule:   If  a customer purchases  milk  then  the
   customer also purchases  butter.

Support ( Rule_1 )  =  1 / 5  •  100 %  =  20 % 

Confidence ( Rule_1 )  =  1 / 1  •  100 %  =  100 %

Improvement ( Rule_1 )  =  ( 1 / 5 ) / ( ( 1 / 5 ) •  ( 4 / 5 ) )  =  5 / 4 = 1.25
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Basic steps of MBA
Q Choose the right set of items and the right level
Q Generate rules by deciphering the co-occurrence

matrix
– calculate the probabilities and joint probabilities of

items and their combinations in transactions
– limit the search with thresholds set on support

Q Analyze probabilities to determine best rules
– overcome limits imposed by the number of items and

their combinations in “interesting” transactions
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MBA - the choice of right items

Gathering transaction data:
Q often bad quality requiring extensive pre-processing
Q items of interest may change over time
Q the right level of detail:

– a growing number of item combinations
– actionable results (specific items)
– rules with sufficient support (frequent occurrence in

the data set)
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Taxonomies: hierarchical categories

MBA - Complexity of generated rules:
Q Use more general items initially
Q Then, generate rules for more specific items using only

transactions containing these items

MBA - Actionable results:
Items should occur in roughly the same number of transactions:
Q roll up rare items to higher levels in the taxonomy (to

become more frequent)
Q keep more common items at lower levels (to prevents rules

from being dominated by the most common items)
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Virtual items: go beyond the taxonomy

Q cross product boundaries of original items
– e.g. designer labels - Calvin Klein

Q may include information about the transaction itself
– anonymous (day of week, time, etc.)
– signed (info about customers and their behavior over time)

Q might be a cause of redundant rules
– items from the taxonomy are associated with just one virtual

item (“If Coke product then Coke.”)
– virtual and generalized items appear together in a rule (“If

Coke product and diet soda then pretzels” instead of “If diet
coke then pretzels”)
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MBA - generating rules
Q Compute the co-occurrence table:

– provides the information about which combinations of
items occur most commonly in the transactions

– applicable for evaluating basic probabilities necessary to
evaluate the importance of generated rules

Q Provide useful rules:
– improvement should be greater than 1

Q low improvement can be increased by negating the rules
Q negated rules might be less actionable than original rules

– reduce the number of generated rules - PRUNING
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Minimum support pruning
Eliminate less frequent items
Q actions should affect enough transactions
Q two possibilities:

– eliminate rare items from consideration (then,
eliminate their respective associative rules)

– use taxonomy to generalize items (then, resulting
generalized items should meet the threshold criteria)

Q variable minimum support - a cascading effect
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MBA - Dissociation rules
Q Rule:      IF A AND NOT B THEN C.

– Introduce new items inverse to original ones
– Each transaction will contain an inverse item if it does

not contain the original one
Q Drawbacks:

– doubled number of items
– growing size of transactions
– inverse items tend to occur more frequently than original

(leading to less actionable rules with all items inverted:
“IF NOT A AND NOT B THEN NOT C.”)
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Time-series analysis with MBA
Q Analyze cause and effects:

– time- or sequencing information to determine when
transactions occurred relative to each other

– usually requires some way of identifying the customer

Q Conversions to an MBA-problem:
– include in transactions items before the event of interest

(for causes) or after the event of interest (for effects);
then, remove duplicate items from the transaction

– time-window: a “snapshot” of all items that occur
within a certain period (e.g. all transactions within a month)

Q trends for rare items
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Strengths of MBA
Q Produces clear and understandable results

– actionable IF - THEN - rules
Q Supports undirected data mining

– important when approaching large data sets
with no prior knowledge

Q Works on variable-length data
Q Computations are easy to understand

– Computational costs grow exponentially with
the number of items!
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Weaknesses of MBA
Q Exponentially growing computational costs

– necessity for item taxonomies and virtual items
Q Limited support for attributes on the data

– pruning of less actionable general items
Q Difficult to determine the right number of items

– items should have approximately the same frequency
Q Discounts rare items

– variable thresholds for minimum support pruning
– higher levels in item taxonomies
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Link Analysis
Q Goals:

– find patterns in relationships between records
– visualize the links

Q Application areas:
– telecommunications
– law enforcement - clues about crimes are linked

together to solve them
– marketing - relationships between customers
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Scale-Free Networks

Q Some nodes have an extremely large number of
links (edges) to other nodes - hubs

Q Most nodes have just a few links to other nodes
Q Robust against accidental failures
Q Vulnerable to coordinated attacks
Q New application areas

– preventing computer viruses spreading through the Internet
– medicine (vaccinations)
– business (marketing)
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Scale-Free Networks

adapted from “A. L. Barabasi and E. Bonabeau: Scale-Free Networks, Scientific American, May 2003”

 A random graph

Distribution of edges Distribution of edges
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 A scale-free network
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Examples of Scale-Free Networks
Q Social networks

– research collaboration (scientists, co-authorship of papers)
– Hollywood (actors, appearance in the same movie)

Q Biological networks
– cellular metabolism (molecules involved in energy production,

participation in the same biological reaction)
– protein regulatory network (proteins controlling cell activity,

interactions among proteins)

Q Socio-technical networks
– Internet (routers, optical or other connections)
– World Wide Web (Web-pages and URLs)
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Scale-Free Networks:
basic characteristics

Q Two basic mechanisms:
– growth
– preferential attachment

Q “The rich get richer” (hubs):
– new nodes tend to connect to the more

connected sites
– “popular locations” acquire more links

over time than less connected neighbors
Q Reliability

– accidental failures  (80% of randomly
selected nodes can fail without
fragmenting the cluster)

– coordinated attacks  (eliminating 5-
15% of all hubs can crash the system)
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Scale-Free Networks

adapted from “A. L. Barabasi and E. Bonabeau: Scale-Free Networks, Scientific American, May 2003”

node

before before before

hub  hub

failed node failed node

after afterafter

attacked hub  

Random network 
accidental node failure

Scale-free network 
accidental node failure

Scale-free network 
attack on hubs
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Implications of
Scale-Free Networks

Q Computing
– networks with scale-free architectures

Q Medicine
– vaccination campaigns and new drugs

Q Business
– cascading financial failures
– marketing
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Implications of
Scale-Free Networks

Computing
Q computer networks with scale-free architectures

(e.g. WWW)
Q highly resistant to accidental failures
Q very vulnerable to deliberate attacks and sabotage

Q eradicating viruses from the Internet will be
effectively impossible
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Implications of
Scale-Free Networks
Medicine
Q vaccination campaigns against serious viruses

focused on hubs
– people with many connections to others
– difficult to identify such people

Q new drugs targeting the hub molecules involved in
certain diseases

Q control the side-effects of drugs with maps of
networks within cells
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Implications of
Scale-Free Networks
Business
Q financial failures

– understand how companies, industries and economies
are inter-linked

– monitor and avoid cascading financial failures

Q marketing
– study the spread of a contagion on a scale-free network
– more efficient ways of propagating consumer buzz

about new products
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Q Goal:

   Find previously unknown similarities in the data!

Q Build models that find data records similar
to each other

Q Good as an initial analysis of the data
Q Undirected data mining

Automatic Cluster Detection



Iveta Mrázová, ANNIE´03 47

Economies grouped
according to their results

purchasing power parity
gross national product
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Mining the World Bank Data:
the Fuzzy c-means Clustering Approach

with Cihan H. Dagli,
Engineering Management Department, University of Missouri - Rolla
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  FCM-clustering: introduction
Q World Development Indicators (WDI)

– published annually by the World Bank
– reflect development process in the countries
– incomplete and imprecise data

Q Previously applied techniques
– regression analysis - linear relationships
– US-based grouping of countries (G. Ip, Wall Street

Journal)
– GDP-based grouping of economies (World Bank)
– self-organizing feature maps (T. Kohonen, S. Kaski, G.

Deboeck)
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• more neurons than
countries

• only local
geometric relations
are important

• countries mapped
close to each other
have a similar state
of development

adapted from “T. Kohonen: Self-Organizing Maps,
3-rd Edition, Springer-Verlag, 2001”

  Poverty maps - T. Kohonen
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 Poverty maps - T. Kohonen, S. Kaski

U-matrix:
z illustrate “boundaries”

between clusters
z represent average

distances between
neighboring neurons
in a gray scale

small average distance
  ⇒  light shade

large average distance
  ⇒  dark shadeadapted from “T. Kohonen: Self-Organizing Maps,

3-rd Edition, Springer-Verlag, 2001”
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  Our goal
Q Cluster efficiently imprecise data
Q Estimate the number of clusters
Q Visualize the results
Q Interpret the results
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  Our goal
Q Cluster efficiently imprecise data
Q Estimate the number of clusters
Q Visualize the results
Q Interpret the results

¾ fuzzy c - means clustering (FCM)
¾ cluster validity indicators
¾ spread-sheet-like form
¾ find “landmarks”
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corresponds to the weighted distance
between input patterns and cluster centers:

membership degrees between 0 and 1:
total membership of a pattern equals to 1:
no empty or full clusters:

    The objective function
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Fuzzy c-means Clustering (FCM)
Q Step 1: Initialize c, s, ε and t. Choose randomly        .
Q Step 2: Determine new fuzzy cluster centers:

Q Step 3: Calculate new partition matrix           :

Q Step 4: Evaluate
If  ∆ > ε  then set  t = t + 1 and go to Step 2. If  ∆ ≤ ε  then Stop.

Q END of FCM

)0(U

)()1(
,

)()1( max t
ip

t
ippi

tt uuUU −=−=∆ ++

p
s

p

t
ip

p

st
ip

t
i xu

u
v rr ∑∑

= )(
)(

1 )(
)(

)(

∑
=

−

−
+

−

−
= c

k

st
kp

st
ipt

ip

vx

vx
u

1

1/12)(

1/12)(
)1(

)/1(

)/1(
rr

rr

)1( +tU



Iveta Mrázová, ANNIE´03 56

Cluster validity criteria
Q Partition coefficient:

Q Partition entropy:

Q Windham´s proportion exponent:
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How many clusters?
Q Partition coefficient:

Q Partition entropy:

Q Windham´s proportion exponent:

{ [ ] });(minmin 12 cUHUPc −≤≤

{ [ ] });(maxmax 12 cUFUPc −≤≤

{ [ ] });(maxmax 12 cUWUPc −≤≤

clusterspartitions
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Supporting experiments - artificial data
Cluster validity indicators for artificial data Fuzzy 4-partition of the data

21 input patterns, s = 1.4, ε = 0.05 ´×´ indicates cluster centers, patterns 
from the same clusters are labeled identically 



Iveta Mrázová, ANNIE´03 59

Supporting experiments - artificial data
Fuzzy 8-partition of the dataFuzzy 6-partition of the data

´×´ indicates cluster centers, patterns 
from the same clusters are labeled identically 

´×´ indicates cluster centers, patterns 
from the same clusters are labeled identically 
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Interpret the results!
Characteristic features for detected clusters:
Q cluster centers - “fictive” patterns out of the data set
Q “calibrate” clusters with the “most representative”

patterns from the data set - based on just one pattern
Q Determine outstanding properties for clusters:

– compared to other properties within the cluster
– compared to properties of other clusters
– exception: “border areas”

                    fuzzy c-landmarks
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Automatic landmark selection
Fuzzy c-landmark for cluster    :
Q “fuzzy distance” from the cluster center should be small
Q “fuzzy distance” from all other cluster centers should be

large
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Supporting experiments:
The World Bank Data
Q 99 state economies with 16 (latest) indicators for each

country
Q economical and social potential of countries and their citizens
Q all indicators are relative to population
Q element-wise transformation to (0,1) with:

                                       and

Q the choice of other parameters (k=4; s=1.4; ε=0.05)
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Used Development Indicators
Q GNP per capita
Q Purchasing Power Parity
Q Growth rate of GDP per

capita
Q GDP implicit deflator
Q External debt (% of GNP)
Q Total debt service (% of

export of goods and services)
Q High technology exports

(% of manufactured exports)
Q Military expenditures

(% of GNP)

Q Expenditures for R&D (% of
GNP)

Q Total expenditures on health (%
of GDP)

Q Public expenditures on education
(% of GNP)

Q Male life expectancy at birth
Q Fertility rates
Q GINI-index (distribution of

income/consumption)
Q Internet hosts per 10000 people
Q Mobile phones per 1000 people



Iveta Mrázová, ANNIE´03 64

Supporting experiments:
the World Bank data
 Cluster validity indicators for the WB-data

99 countries with 16 indicators 
           s = 1.1, ε = 0.05

Cluster validity indicators for the WB-data

99 countries with 16 indicators 
           s = 1.4, ε = 0.05
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Fuzzy 7-partition of the WB data

A part of the fuzzy 7-partition of the World Bank data: 
99 countries with 16 indicators; s = 1.4, ε = 0.05
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Landmarks for the WB data

“Representative patterns” and fuzzy 7-landmarks for the World Bank data: 
                99 countries with 16 indicators; s = 1.4, ε = 0.05
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FCM-Clustering: conclusions
Q FCM-clustering

– efficiency and cluster validity
– choice of the fuzziness parameter
– grouping of country economies (World Bank, Ip,

Kohonen, Deboeck)

Q Visualization
– membership degree
– topological relationships

Q Landmarks and interpretation of the results
– formulation of “class discriminating” criteria
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Q Rule extraction:
      Characteristics         Economical_results
– fuzzy inference systems
– (feed-forward) neural networks

Q back-propagation
Q RBF-networks

Q Neuro-fuzzy systems with adaptive inputs
– detection of significant input patterns
– influence of internal knowledge representation
– speed-up the training and recall process

From FCM towards Fuzzy Systems
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Artificial Neural Networks (ANN)

  Detect patterns in the data in a way “similar” to
human thinking!

Q Directed data mining (classification and
prediction)

Q Applicable also to undirected data mining (SOMs)
Q Two major drawbacks:

– difficulty in understanding the models they produce
– sensitivity to the format of incoming data



Back-Propagation
and GREN-networks
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Introduction

Q Multi-layer feed-forward networks (BP-networks)
– one of the most often used models
– relatively simple training algorithm
– relatively good results

Q Limits of the considered model
– the speed of the training process
– convergence and local minimums
– generalization and “over-training”
 additional demands
                   on the desired network behavior
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� corresponds to the difference between the
actual and the desired network output:

� the goal of the training process is to minimize
this difference on the given  training set

          Back-Propagation training algorithm

The error function

( )2
,,2

1 ∑ ∑ −=
p j

pjpj dyE

actual output

desired
output

patterns output neurons
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The Back-Propagation
training algorithm

Q computes the actual output
for a given training pattern

Q compares the desired and
the actual output

Q adapts the weights and the
thresholds

– against the gradient of the
error function

– backwards from the output
layer towards the input
layer

I N P U T

O U T P U T
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Drawbacks of the
standard BP-model
Q The error function

– correspondence to the desired behavior
– the form of the training set

O requires the knowledge of desired network outputs
O better performance for “larger” and “well-balanced”

training sets

Q Generalization abilities
– ability to interpret and evaluate the “gained” experience
– retraining for modified and/or developing task domains
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Desired properties
of trained networks
Q Robustness against small deviations of

those input patterns lying “close to the
separating hyper-plane”

Q Transparent network structure with a
suitable internal knowledge representation

Q A possible reuse of already trained
networks under changed conditions
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Condensed internal representation

Q interpret the activity of
hidden neurons:
1 active YES
0 passive NO

silent
“no decision possible”

Q “clear” the inner
network structure

Q detect superfluous
neurons and pruneI N P U T

O U T P U T

1
2
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How to force the condensed
internal representation?

Q formulate “the desired properties” in the form of
an objective function:

Q local minima of the representation error function
correspond to active, passive and silent states:

G E c Fs= +
Standard error function

Representation error function

the influence of F on G

( ) ( )F y y yh p
s

hp
h p

s

h p= − −∑∑ , , , .1 0 5
2

silent state
active state

passive statepatterns
hidden neurons

the shape of F
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Influence of parameters
Q slower forcing of the internal

representation and the desired
network function

Q stability of the forced internal
representation and an optimal
network architecture

Q the shape of the representation
error function, the speed of the
representation forcing process
and its form

Q the time-overhead of the weight
adjustment( ) ( )w t w t y yij ij j i r j i+ = + + +1 αδ α ρ

( ) ( )( )+ − −α m ij ijw t w t 1
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Further modifications of
the representation function
Q Discrete internal representation:

(S allowed output values               for neurons from the
last hidden layer)

Q Condensed internal representation for all
hidden layers:

( ) ( ) ( )F y r y r y rj p
jp
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j p S

t

j p s
sjp

tS s
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Unambiguous
internal representation
Q Patterns with highly different outputs should form

highly different internal representations
Q Formulate the requirements as a modified

objective function:
Q Ambiguity criterion for the internal representation:

G E F H= + +

( ) ( )H d d y yo p o q
ojq pp

j p j q= − − −∑∑∑∑
≠

1
2

2 2

, , , ,

= const. for a given p

= const. for a given p
= const. for a given ppatterns

hidden neurons
 output  
neurons
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Modular structure of BP-networks

Q Decompose the task into the particular subtasks
Q Propose and form the modular architecture

– strategy for extracting ε-equivalent BP-modules
Q elimination of superfluous hidden and/or input neurons
Q suitable for "already trained" networks
Q a compromise between the desired accuracy of the extracted

module and its optimal architecture

Q Communication between the particular modules
– serial and parallel composition of BP-networks
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Extracting BP-modules
- allowed potential deviations

Q The potential change
is in this case smaller than the
potential change

Q The potential should change
"towards the separating hyper-
plane"

Q The changed potential should
preserve the location of the input
pattern in the same half-space

Q The allowed potential changes
should be independent of each
particular input pattern (from S)
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Notes on the construction of
an ε-equivalent network

Q possible improvements of
network properties:

– “egalitarian” versus
“differentiated” approach

Q the relationship of the
construction to “more
robust” networks

– necessary knowledge of
εr-boundary regions

– preserve the created internal
representation

I N P U T

O U T P U T
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Desired properties of “experts”
for training (modular) BP-networks

Q evaluate the error connected
with the actual response of
a BP-network

Q “explain” the BP-network its
error during training

Q not require the knowledge of
the desired network output

Q but should recognize a correct
behavior

Q “suggest” a “better” behavior
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Desired properties of “experts”
for training BP-networks

Q evaluate the error connected
with the actual response of
a BP-network

Q “explain” the BP-network its
error during training

Q not require the knowledge of
the desired network output

Q but should recognize a correct
behavior

Q “suggest” a “better” behavior
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Desired properties of “experts”
for training BP-networks

Q evaluate the error connected with
the actual response of       a BP-
network

Q “explain” the BP-network its error
during training

Q not require the knowledge of   the
desired network output

Q but should recognize a correct
behavior

Q “suggest” a “better” behavior
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GREN-networks:
Generalized relief error networks

Q assign the error to the pairs
[input pattern, actual output]

Q trained e.g. by the standard
BP-training algorithm

Q should have good approximation
and generalization abilities

Q “approximates” the error function
by:

INPUT PATTERN ACTUAL OUTPUT

ERROR VALUES

∑ ∑=
p e

GR
pe

BeE ,

output neurons of
the GREN-network

output values of
the GREN-networkpatterns
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A modular system for training
BP-networks with GREN-networks

ERROR VALUES

INPUT PATTERN

INPUT PATTERN

ACTUAL OUTPUT

GREN-NETWORK

ADAPTED
BP-NETWORK
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Q Applied the basic idea of Back-Propagation
Q How to determine the error terms at the

output of the trained BP-network?

  Use error terms back-propagated
   from the GREN-network

Q Weight adjustment rules similar to the
standard Back-Propagation

Training with a GREN-network
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Training with a GREN-network

Q Applied the basic idea of Back-Propagation

Q How to determine                 at the output
layer of the BP-network B?

B
ij

B
j

B
j

B
j

B
j

B
ij

B
ijE w

y
y
E
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Ew

∂
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∂
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potential 
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weight of a BP-network Bactual output

error computed by the GREN-network

B
jyE ∂∂
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Weight adjustment rules

Q Use error terms back-propagated from the
GREN-network

Q Rules similar to the standard Back-Propagation

Q For output neurons, compute       by means of
propagated from the GREN-network

B
i

B
j

B
ij

B
ij yoldwneww αδ+= )()(

BGR
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B y
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Error terms for
the trained BP-network
Q The back-propagated error terms      correspond

for             to:
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Is the GREN-network an “expert”?

Q Has not to “know the right answer”
Q But should “recognize the correct answer”

     for an input pattern, yield the minimum error
     only for one actual output - the right one

Q Simple test for “problematic” GREN-experts:
– zero-weights from the actual output
– zero “y-terms” of potentials in the 1. hidden layer
– “too many large negative weights” ∑∑ +− >>

i
i

i
i ww

By
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Find “better” input patterns!

Q input patterns of a GREN-network
Q “similar” to those presented to and recalled by

the BP-network
Q with a smaller error

O  minimize the error at the output of the  
GREN-network, e.g. by back-propagation

O  adjust input patterns against the gradient
 of the GREN-network error function
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Avoid “problematic”
GREN-networks!

Q Insensitive to the outputs of trained BP-networks
– inadequately small error terms back-propagated by the

GREN-network

Q Incapable of training further BP-networks
– small error terms even for large errors

 Our goal:
 Increase the sensitivity of GREN-

networks to their inputs!
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How to handle the
sensitivity of BP-networks?
Increase their robustness:
Q over-fitting leads to functions with a lot of structure

and a relatively high curvature
Q favor “smoother” network functions
Q alternative formulation of the objective function

– penalizing large second-order derivatives of the network
function

– penalizing large second-order derivatives of the transfer
function for hidden neurons

– weight-decay regularizers
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Controlled learning
of GREN-networks
Q Require GREN-networks sensitive to their inputs

– non-zero error terms for incorrect BP-network outputs

Q Favor larger values of the error terms

         Minimize during training
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Weight adjustment rules

Q Regularization by means of

Q Rules similar to the standard Back-Propagation
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Characteristics of the method

Q Applicable to any BP-network and/or input neuron
Q Quicker training of “actual” BP-networks

– larger “sensitivity terms”                  transfer better the
errors from the GREN-network

Q Oscillations during training “actual” BP-networks
– due to the “linear” nature of the GREN-specified error

function

rs yy ∂∂ /

patterns 

∑ ∑=
p e

GR
pe

BeE ,

output neurons of
the GREN-network

output values of the
GREN-network
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Modification of the method
Q Use “quadratic” GREN-specified error terms for training

“actual” BP-networks

Q Considers both the GREN-network outputs            and the
“sensitivity” terms

Q Crucial for low sensitivity to erroneous training patterns

B
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Supporting experiments
Output of the standard BP-network
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Supporting experiments
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Supporting experiments

Output of the standard BP-network
         (with 8 hidden neurons)
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Supporting experiments
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Supporting experiments

     Sensitivities and error for a  
controlled-trained GREN-network
           (control rates = 0.2)

        Sensitivities and error for an
        over-trained GREN-network
               (control rates = 0.2)
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GREN-networks: conclusions

Q GREN-networks can train BP-networks
without the knowledge of their desired
outputs

Q A simple detection of “problematic”
GREN-experts

Q GREN-networks can find “similar” input
patterns with a lower error
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Conclusions:
Sensitivity of GREN-networks

Q Increase the sensitivity of trained GREN-networks
to their inputs

Q Detect “over-training” in GREN-networks
Q Train BP-networks more efficiently by

minimizing squared GREN-network outputs
instead of the “linear” ones

Q Further research: simplified sensitivity control



Acoustic Emission and
Feature Selection Based on

Sensitivity Analysis

with M. Chlada and Z. Převorovský, 
Institute of Thermomechanics, Academy of Science 
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Acoustic Emission and Feature
Selection Based on Sensitivity Analysis

Q BP-networks and sensitivity analysis
– larger “sensitivity terms”                 indicate higher

importance of the feature i

Q numerical experiments
– acoustic emission:

Q classification of simulated AE data
– feature selection:

Q reduction of original input parameters (from 14 to 6)
Q model dependence between parameters

|| ij xy ∂∂



Iveta Mrázová, ANNIE´03 111

 Simulation of AE-data
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Original Features for AE-signals
Q amplitude:
Q rise time
Q effective value (RMS)

Q energy moment:

Q mean value:

Q deviation:

Q asymmetry:

Q excess:

Q 6 spectral parameters:

with

and
fN is the Nyquist frequency
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Factor analysis
for input parameters

Q 9 factors selected
Q “explain” 98.4% of all

variables, e.g.
– higher energy of signals

lead to higher
amplitudes and RMS
(parameters 1, 3, 4)

Q allow to reduce linearly
dependent input
parameters

– in our case to: 2, 3, 5, 6,
7, 8, 11, 12 and 2 new
spectral parametersselected factors

in
pu

t p
ar
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0.173
0.093
0.320
0.301
0.564
0.196
0.099
0.065
0.022
0.053
0.035
0.039
0.081
0.260

0.266
0.068
0.193
0.178
0.250
0.322
0.063
0.015
0.014
0.020
0.012
0.050
0.134
0.172

0.149
0.047
0.184
0.196
0.206
0.158
0.043
0.030
0.016
0.012
0.032
0.022
0.082
0.109
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Sensitivity analysis
of trained BP-networks

Q 2000 samples
– 500 training s.

Q 14-27-19-3
Q 180 iterations
Q selected inputs:

– sensitivity analysis
1, 3, 4, 5, 6, 13, 14

– + factor analysis
 1, 3, 5, 6, 13, 14

Q new architecture:
6-13-7-3 (even with slightly
better MSE-results)
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 Model dependence
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Knowledge extraction
in neural networks
(students’ questionnaire)

with Eva Poučková,
Department of Software Engineering, Charles University Prague
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Knowledge representation in NN

 Distributed!
⌦Which inputs are the

most important ones?
⌦What and how does the

network do?

I N P U T

O U T P U T
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Knowledge extraction in NN

� Dimension reduction and sensitivity analysis
for inputs

� Rule extraction from trained networks
– Structural learning with forgetting

zBP-networks
zGREN-networks

– Babsi-trees (B. Hammer et al.)
zGRLVQ



Iveta Mrázová, ANNIE´03 121

Dimension reduction
� PCA: linear transformation of the input data
� Sensitivity analysis:

Feature Subset Selection (FSS)
� Correlation-based Feature Selection (CFS):

select a group of features with a high
average correlation input_feature - output
but with a low mutual correlation



Iveta Mrázová, ANNIE´03 122

Dimension reduction: results
PCA: method not suitable for further

processing – knowledge and rule extraction

  FSS: 7 features    CFS: 7 features

   25 original features

8 features selected as a union of the
results for FSS and CFS
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Features selected for
the overall evaluation

Feature subset selection
(FSS):
(1) understandable subject
(2) structured and prepared

presentations
(3) interesting classes
(4) quality of education
(5) understandable classes
(6) start/end of class on time
(7) relationship to students

Correlation-based feature
selection (CFS):
(1) understandable subject
(2) structured and prepared

presentations
(3) interesting classes
(4) quality of education
(5) understandable classes
(6) start/end of class on time
(8) students prepare for

classes
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Methods for knowledge extraction

¾ SLF – Structural learning with forgetting
• Learning with forgetting
• Learning with forcing internal representations on

hidden neurons
• Learning with selective forgetting

¾ Babsi-trees
• Form a tree from a neural network trained by

means of the GRLVQ-method
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Generalized relevance learning
vector quantization (GRLVQ)
Q a robust combination of GLVQ and RLVQ
Q provides weighing factors (λ) for input features

– larger λ corresponds to a “more important” feature

Q applicable to pruning of input features
Q GLVQ: considers class representatives

– separating surfaces approach the optimum Bayessian ones

Q RLVQ: input features can have different importance
– relatively unstable, sensitive to noise
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Generalized LVQ - GLVQ
Q Select a fixed number of representatives w1, …,

wL for all classes Ci, i=1, …, q.
Q Receptive field of the class representative wi

Q Receptive fields of class representatives should
be as small as possible!
– minimize                                  ; σ denotes the sigmoid

– and
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Relevance LVQ - RLVQ
Q Input features can have different importance λ

Q Receptive field of the class representative wi

Q Weight adjustment according to GLVQ with adaptive
importance factors λ i for input features  ( 0 < ε < 1 ):
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Generalized Relevance Learning
Vector Quantization (GRLVQ)
Q Weight adjustment according to GLVQ

with adaptive importance factors λ i for
input features:
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Babsi-trees
Root-trees G=(V,E) satisfying the following conditions:
¾ all vertices vi∈V can have an arbitrary number ni of sons
¾ all leaves vJ are labeled with the corresponding classification

class CJ

¾ all vertices vi  which are not leafs are labeled with
¾        stands for the currently processed  input dimension i
¾   dimensions are “ordered” according to their importance (λ)

¾ All edges going from a vertex vi to its sons are labeled with
intervals
¾ interval boundaries are placed in the middle between two

neighboring cluster representatives

ivI
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SLF for layered networks
    feed-forward
neural networks

GREN-networks
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Results for the SLF-method

 Both BP-networks and GREN-trained
networks lead to similar sets of rules:
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The resulting Babsi-tree
Relevant dimensions 
(features): 4, 8 and 7 (4)

(8)

(7)

Overall evaluation

many patterns

just one 
pattern

Values for intervals: 1   (-∞,1.5)
2   [1.5,2.5)
3   [2.5,3.5)
4   [3.5,4.5)
5   [4.5,∞)

ambiguous 
classification
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Comparison of the results
SLF
¾ Few simple hierar-

chically ordered rules
¾ Possibility to add rules

after achieving the
desired accuracy

¾ Rule correctly
applicable - 71%
and 73%, resp.

Babsi-trees
¾ Many simple rules
¾ Quick training of the

network
¾ Few training

parameters
¾ Rule correctly

applicable - 67%
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Knowledge extraction: Conclusions

¾ Main results achieved:
• dimension reduction for the input space
• analysis of various models for knowledge extraction
• rule extraction from GREN-networks
• comparison with other neural network models

¾ Further research:
• adjusting rules extracted from a neural network trained

with the GRLVQ-algorithm
• (automatic) selection of training parameters for the

SLF-algorithm
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Genetic Algorithms (GA)
Apply genetics and natural selection to find
optimal parameters of a predictive function!

Q GA use “genetic” operators to evolve successive
generations of solutions:
– selection
– crossover
– mutation

Q Best candidates “survive” to further generations
until convergence is achieved

Q Directed data mining
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The basic Genetic Algorithm
Q Step 1:Create an initial population of individuals
Q Step 2: Evaluate the fitness of all individuals in 

      the population
Q Step 3: Select candidates for the next generation
Q Step 4: Create new individuals (use genetic  

      operators - crossover and mutation)
Q Step 5: Form a new population by replacing 

      (some) old individuals by new ones
Q GOTO Step 2



ANTARES
STUDENT SOFTWARE PROJECT
supervised by I. Mrázová, F. Mráz

participating students:
D. Bělonožník, D. J. Květoň, M. Šubert,

J. Tomaštík, J. Tupý

http://www.ms.mff.cuni.cz/~mraz/antares
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Project ANTARES
Q Generate melodies with genetic algorithms

– the fitness of candidate solutions is evaluated by
the cooperating feed-forward neural network

Q Parallel implementation of genetic algorithms
– open system for the design and testing of genetic

algorithms and neural networks
– supports mutual cooperation between neural

networks and genetic algorithms
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Fitness evaluation
with neural networks

Q For some problems, it might be difficult to
define explicitly the fitness function
– e.g. „evaluate“ the beauty of generated melodies

Q Fitness of candidate melodies (generated by
GA) is evaluated by the pre-trained NN:
– provide a set of positive and negative examples

(supervised learning)
– train a feed-forward network to approximate the

„unknown“ fitness function (on the training set)
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Generating melodies:
positive training samples
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Generating melodies
Q Positive training samples

Q Negative training samples

Q Test samples (with a high fitness value)

Q Generated melodies



Thank you for your attention!
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