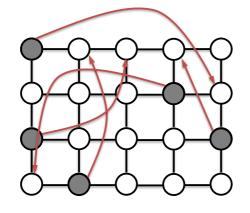
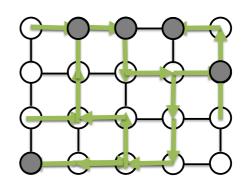


Seminar on Artificial Intelligence II


Roman Barták


Department of Theoretical Computer Science and Mathematical Logic

Structure

- Solving micro-projects (1-3 students) on specific topics from areas such as multi-agent path finding, adversarial search, computer vision, machine learning, etc. using a swarm of Ozobot robots.
- Each team will report three times:
 - project vision (what we are going to do, oral)
 - progress report (where we are now, oral)
 - final report (what we did, oral+written)

Multi-Agent Pathfinding (MAPF)

Find a collision-free plan (path) for each agent

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

Solving approaches

Search techniques

state-space search (A*)

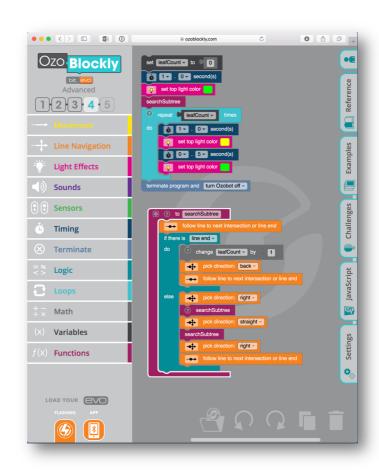
state = location of agents at nodes

transition = moving agents to neighboring nodes

conflict-based search

Compilation techniques

translate the problem to another formalism (SAT/MIP/CSP)


Ozobot Evo

- Line following (and color detecting)
- Proximity sensors
- Speaker
- Bluetooth

OzoBlocky

- Control commands
- Sensor readings
- Programing structures

Possible projects

- Path Finding
 - Multi-agent, single-agent
 - Centralized, distributed
 - Offline, online
- Computer vision
 - Map construction from line drawing
 - Robot tracking
- Intention detection
 - Predicting next move based on moves so far
- ...

Roman Barták

Charles University, Faculty of Mathematics and Physics bartak@ktiml.mff.cuni.cz