How AlphaGo Works

Yuu Sakaguchi

How to Play Go

Played on a 19 x 19 square grid board.

Black and white stones.

Points awarded for surrounding empty space.

Why is Go Hard to Compute?

Why is Go Hard to Compute?

Search space is huge

After the first two moves of a Chess game, there are 400 possible next moves. In Go, there are close to 130,000.

Complexity : 250¹⁵⁰ possible sequenses

Match against Lee Sedol

AlphaGo played professional Go player Lee Sedol, ranked 9-dan, one of the best players at Go in March 2016.

AlphaGo won by 4 - 1.

How did AlphaGo solve it?

How did AlphaGo solve it?

Ideas

- Deep Learning
- Convolutional Neural Network
- Supervised Learning
- Reinforcement Learning
- Monte-Carlo Tree Search

How did AlphaGo solve it?

Strategies

Knowledge learned from human expert games and self-play.

Monte-Carlo search guided by policy and value networks.

Computing Go

AlphaGo sees the board as One-hot matrix.

Give a state **s**, pick the best action **a**.

Computing Go

Convolutional Neural Network (CNN)

The hidden layers of a CNN consist of convolutional layers, pooling layers, fully connected layers and normalization layers. There are many applications such as image and video recognition, recommender systems and natural language processing.

Types of Neural Networks

1.Policy Network

Breath Reduction. Finds the probability of the next move, and reduces the action candidates.

2. Value Network

Depth Reduction. Evaluates the value of the board at each state.

Types of Neural Networks

	Name	Network	Data Set	Speed
Policy Network P(a s)	Ρ _π Ρ _ζ	Linear Softmax	8M from expert players	CPU 2µs
Σ _a P(a s) = 1	Ρ _σ Ρ _ρ	Deep Network	28M from expert players	GPU 2ms

Value Network Vθ(S) [-1,1]	ν _θ	Deep Network	30M random states from P + 160M probabilities from P	GPU 2ms

Types of Neural Networks

Policy Network

- Input layer : 19 x 19 x 48
- Hidden layers : 19 x 19 x k x (12 layers)
- Output layer : 19 x 19 P(a|s)

Value Network

- Input layer : 19 x 19 x 49
- Hidden layer : 19 x 19 x 192 x (12 layers) + 19 x 19 x (1 layer) + 256 x (1 layer)
- Output layer : 1 output V(S)

Types of Networks

Feature	# of planes	Description	
Stone colour	3	Player stone / opponent stone / empty	
Ones	1	A constant plane filled with 1	
Turns since	8	How many turns since a move was played	
Liberties	8	Number of liberties (empty adjacent points)	
Capture size	8	How many opponent stones would be captured	
Self-atari size	8	How many of own stones would be captured	
Liberties after move	8	Number of liberties after this move is played	
Ladder capture	1	Whether a move at this point is a successful ladder capture	
Ladder escape	1	Whether a move at this point is a successful ladder escape	
Sensibleness	1	Whether a move is legal and does not fill its own eyes	
Zeros	1	A constant plane filled with 0	
Player color	1	Whether current player is black	

Feature planes used by the policy network (all but last feature) and value network (all features).

Types of Networks

Policy Network

Input - First hidden layer :

- 2x2 padding
- 5x5 convolutional by 5 filters
- ReLU function

n - n+1 hidden layer

- 21x21 padding
- 3x3 convolutional by 3 filters
- ReLU function

12th hidden layer - Output

- 1 output
- Different biases on each place on board
- Softmax function

Types of Networks

Value Network

Input - 12th hidden layer :

Same as policy network.

12th - 13th hidden layer

- 1x1 filter
- ReLU function
- 13th 14th hidden layer
 - Fully connected
 - ReLU function

14th - output

- Fully connected
- tanh function

Training

Supervised learning of policy network

4 weeks on 50 GPUs using Google Cloud.

57% accuracy on test data.

Training

Reinforcement learning of policy network

1 week on 50 GPUs using Google Cloud.

80% against supervised learning.

Training

Supervised learning of value network

1 week on 50 GPUs using Google Cloud.

Monte-Carlo Tree Search

Monte-Carlo Tree Search

Monte-Carlo Tree Search : selection

P : prior probability

Q : action value

u(P) = P/N

Monte-Carlo Tree Search : expansion

- P_{σ} = policy network
- P = prior probability

Monte-Carlo Tree Search : evaluation

 V_{θ} = value network

Monte-Carlo Tree Search : rollout

 V_{θ} = value network

r = game score

Monte-Carlo Tree Search : backup

Q = action value

 V_{θ} = value network

r = game score

DeepMind - Beyond AlphaGo

Questions?