Meta Learning

Jakub Střelský

Machine learning

Parametric machine learning algorithms:

- 1. Define parametric model
- 2. Learn the model parameters from training data

Step 2 is typically a form of function optimization (e.g. maximizing conditional likelihood of parameters given the training data)

How do we make it work

- Design models that describes data well and can be learned efficiently - very important
 - We cannot recover from poor choice of model model complexity

Cannot describe data	"Just right"	Overfitting and infeasible to train
		- Control of the cont

- Choice of model must reflect complexity of data
- Apply proper learning algorithm to find parameters of selected model
- Fine-tune learning algorithm (e.g. find good hyper-parameters for given learning instance)

Meta learning

- Simply: Learning to learn
- Training data are instances of "similar" learning problems
- We want to make use of learning experience in order to improve learning in future

How?

- Typical example: tuning of hyper-parameters of learning
- But even: altering learning algorithm or model

When to consider meta learning

- If we assume that learning instances are related, but the relation is subtle and hard to describe mathematically
- Linear regression
- Image classification with neural networks

Neural optimizer search with reinforcement learning

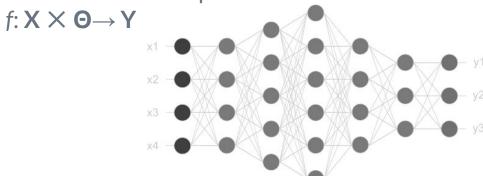
Irwan Bello, Barret Zoph, Vijay Vasudevan and Quoc V. Le

Published 2017 in ICML

http://proceedings.mlr.press/v70/bello17a.html

Neural networks

Neural network represents function



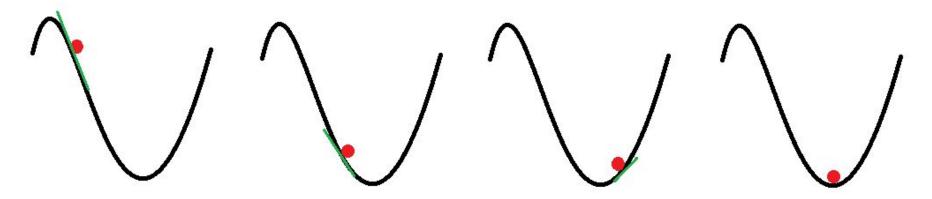
- In supervised learning scenario,
 we have a set of input-target pairs (x_i, y_i) i = 1,2...N
- Objective function J defined for a task, e.g. MSE for regression:

$$J = (1/N) \sum_{i} (f(\mathbf{x}_{i}, \mathbf{\theta}) - \mathbf{y}_{i})^{2}$$

Neural networks training

- Network is trained by searching minimum of J
- We calculate gradient $\nabla_{\theta} J$ (backpropagation)

•
$$\theta_{\text{new}} = \theta - \lambda * \nabla_{\theta} J$$



Tricks

- Mini-batches
- Decaying learning rate
- Stabilizing updates
- E.g Adam (roughly):

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \lambda_t * m_t / sqrt(\mathbf{v}_t)$$

m_t: estimate of gradient mean

v_t: estimate of gradient variance

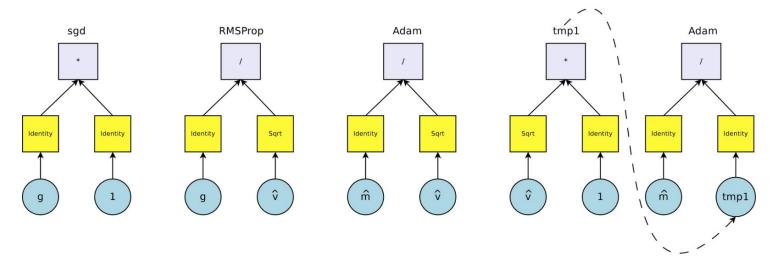
Learning optimizers

One step of (meta) learning cycle:

- Controller generates update rule $\Delta \theta$ of optimizer
- We train neural network using $\Delta \theta$ ($\theta_{t+1} = \theta_t \Delta \theta_t$)
- Reward of $\Delta \theta$ is expected accuracy of neural network on validation data

Rules

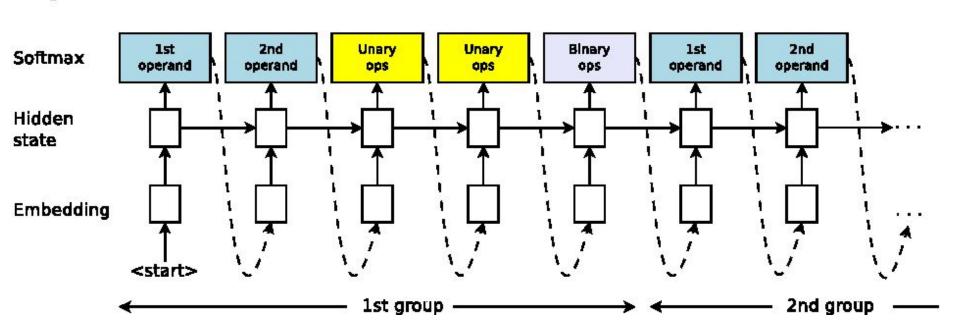
- Rules are expressions defined by binary tree
- Δθ = λ * b(u₁(op₁), u₂(op₂))
 b-binary op, u_{1,2} unary ops, op_{1,2} operands
 Operands are either inputs or expressions



Rules

- Operands: gradient, estimated moments of gradient, sign(gradient), Adam, RMSProp, small noise, constant...
- Unary operations u(x):
 x, -x, log(abs(x)), exp(x), sign(x), clip(x,0.001)...
- Binary operations b(x,y): Addition, subtraction, multiplication, division and b(x,y) = x
- Depth of trees was bounded by depths: 1,2 and 3

Controller



Learning details

- Controller is learned via reinforcement learning (variant of policy gradient method)
- Target network is small convolutional network with 2 layers
- Target network is trained for 5 epochs on image classification dataset CIFAR-10
- Learning rate of update rule is determined by choosing best learning rate from 10⁻⁵, 10⁻⁴, ... 10¹ after 1 epoch

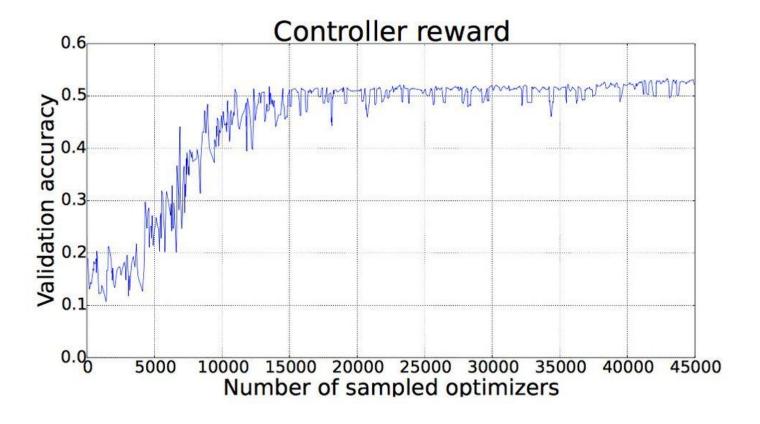


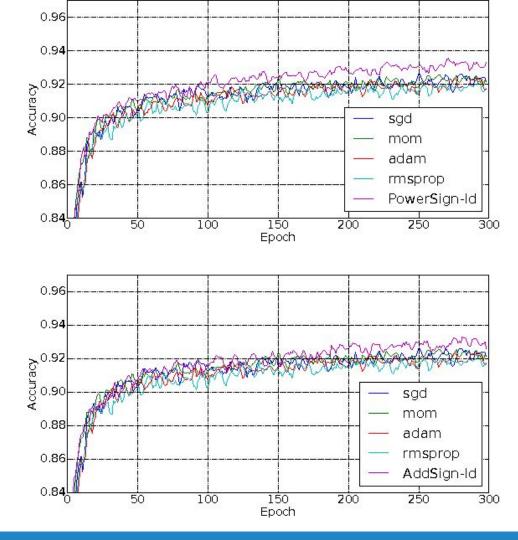
Figure 4. Controller reward increasing over time as more optimizers are sampled.

Discovered rules

Successful building block:

Exp is positive, so weight updates follow direction -**g** with scaling. Scaling is either *e* when signs agree, or 1/*e* when signs disagree.

- $\mathbf{g} * (\text{clip}(\mathbf{g}, 10^{-4}) + \exp(\text{sign}(\mathbf{g}) * \text{sign}(\mathbf{m}))$
- Adam * exp(sign(g) * sign(m))
- $drop(\mathbf{g},0.1) * exp(sign(\mathbf{g}) * sign(\mathbf{m}))$



CIFAR-10 with Wide ResNet

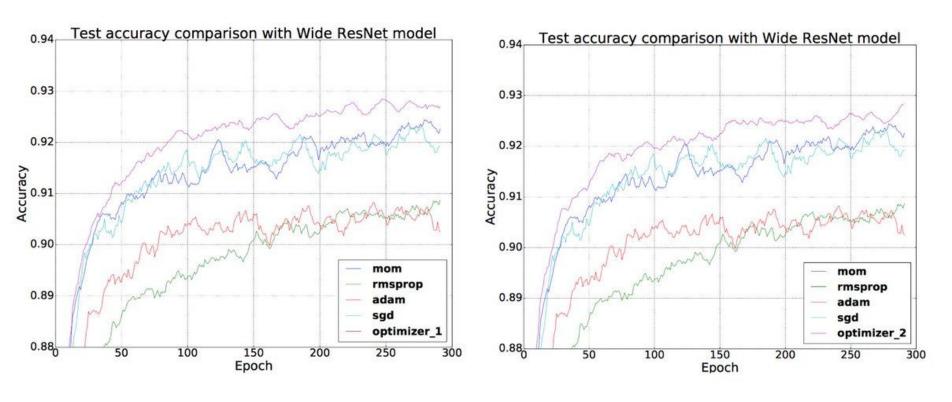


Figure 7. Comparison of two of the best optimizers found with Neural Optimizer Search using Wide ResNet as the architecture.

Optimizer_1 refers to $[e^{\operatorname{sign}(g)*\operatorname{sign}(m)} + \operatorname{clip}(g, 10^{-4})] * g$ and Optimizer_2 refers to $\operatorname{drop}(\hat{m}, 0.3) * e^{10^{-3}w}$.

P				
SGD	92.0	91.8	92.9	91.9
Momentum	92.7	92.1	93.1	92.3
ADAM	90.4	90.1	91.8	90.7
RMSProp	90.7	90.3	91.4	90.3
$[e^{\operatorname{sign}(g)*\operatorname{sign}(m)} + \operatorname{clip}(g, 10^{-4})] * g$ $\operatorname{clip}(\hat{m}, 10^{-4}) * e^{\hat{v}}$	92.5	92.4	93.8	93.1
$\operatorname{clip}(\hat{m}, 10^{-4}) * e^{\hat{v}}$	93.5	92.5	93.8	92.7
$\hat{m} * e^{\hat{v}}$	93.1	92.4	93.8	92.6
$g * e^{\operatorname{sign}(g) * \operatorname{sign}(m)}$	93.1	92.8	93.8	92.8
$drop(g, 0.3) * e^{sign(g)*sign(m)}$	92.7	92.2	93.6	92.7
$\hat{m} * e^{g^2}$	93.1	92.5	93.6	92.4
$drop(\hat{m}, 0.1)/(e^{g^2} + \epsilon) drop(g, 0.1) * e^{sign(g)*sign(m)}$	92.6	92.4	93.5	93.0
$drop(g, 0.1) * e^{sign(g)*sign(m)}$	92.8	92.4	93.5	92.2
$\operatorname{clip}(RMSProp, 10^{-5}) + \operatorname{drop}(\hat{m}, 0.3)$	90.8	90.8	91.4	90.9
$ADAM * e^{\operatorname{sign}(g)*\operatorname{sign}(m)}$	92.6	92.0	93.4	92.0
$ADAM * e^{\hat{m}}$	92.9	92.8	93.3	92.7
$g + \operatorname{drop}(\hat{m}, 0.3)$	93.4	92.9	93.7	92.9
$g + \operatorname{drop}(\hat{m}, 0.3)$ $\operatorname{drop}(\hat{m}, 0.1) * e^{g^3}$	92.8	92.7	93.7	92.8
$g - \text{clip}(g^2, 10^{-4})$ $e^g - e^{\hat{m}}$	93.4	92.8	93.7	92.8
	93.2	92.5	93.5	93.1
$drop(\hat{m}, 0.3) * e^{10^{-3}w}$	93.2	93.0	93.5	93.2

Final Val

Final Test

Best Val

Best Test

Optimizer

Table 1. Performance of Neural Search Search and standard optimizers on the Wide-ResNet architecture (Zagoruyko & Komodakis, 2016) on CIFAR-10. Final Val and Final Test refer to the final validation and test accuracy after for training for 300 epochs.

Final notes

- Rule g * exp(sign(g) * sign(m)) was also applied to language translation with RNN yielding better accuracy than Adam
- The rule is also more memory efficient than Adam (it does not need to store variance estimate)
- Overall very good application of meta learning (maybe yielding new "default" optimizer)

Thank you for attention!