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Machine learning

Parametric machine learning algorithms:

1. Define parametric model
2. Learn the model parameters from training data

Step 2 is typically a form of function optimization 

(e.g. maximizing conditional likelihood of parameters given  the 
training data) 



How do we make it work

● Design models that describes data well and can be learned 
efficiently - very important
○ We cannot recover from poor choice of model

model complexity

○ Choice of model must reflect complexity of data
● Apply proper learning algorithm to find parameters of 

selected model
● Fine-tune learning algorithm (e.g. find good 

hyper-parameters for given learning instance)

Cannot describe data “Just right”  Overfitting and infeasible to train



Meta learning

● Simply: Learning to learn
● Training data are instances of “similar” learning problems
● We want to make  use of learning experience in order to 

improve learning in future

   How ?

● Typical example: tuning of hyper-parameters of learning
● But even: altering learning algorithm or model



When to consider meta learning

● If we assume that learning instances are related, but the 
relation is subtle and hard to describe mathematically

           Linear regression

           Image classification with neural networks
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Neural networks

● Neural network represents function 
f: X ✕ Θ→ Y  

● In supervised learning scenario, 
we have a set of input-target pairs (x

i
, y

i
)    i = 1,2...N

● Objective function J defined for a task, e.g. MSE for 
regression:

     J = (1/N) ∑
i 
(f(x

i
,ፀ) - y

i
)2



Neural networks training

● Network is trained by searching minimum of J
● We calculate gradient ▽

ፀ
J  (backpropagation)

● ፀ
new

 = ፀ - λ ∗ ▽
ፀ

J



Tricks

● Mini-batches
● Decaying learning rate
● Stabilizing updates
● E.g Adam (roughly):
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m
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 : estimate of gradient mean
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 : estimate of gradient variance



Learning optimizers

One step of (meta) learning cycle:

● Controller generates update rule △ፀ of optimizer
● We train neural network using △ፀ     ( ፀ

t+1
 = ፀ

t 
 - △ፀ

t 
)

● Reward of △ፀ is expected accuracy of neural network on 
validation data 



Rules
● Rules are expressions defined by binary tree
● △ፀ = λ ∗ b(u
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 - unary ops,   op
1,2

 - operands

Operands are either inputs or expressions 



Rules

● Operands:
gradient, estimated moments of gradient,
sign(gradient), Adam, RMSProp, small noise, constant…

● Unary operations u(x):
x, -x, log(abs(x)), exp(x), sign(x), clip(x,0.001)...

● Binary operations b(x,y):
Addition, subtraction, multiplication, division and b(x,y) = x 

● Depth of trees was bounded by depths: 1,2 and 3



Controller



Learning details

● Controller is learned via reinforcement learning (variant of 
policy gradient method)

● Target network is small convolutional network with 2 
layers

● Target network is trained for 5 epochs on image 
classification dataset CIFAR-10

● Learning rate of update rule is determined by choosing 
best learning rate from 10-5, 10-4, … 101 after 1 epoch



Results



Discovered rules

Successful building block: 

       g ∗ exp(sign(g) ∗ sign(m))

Exp is positive, so weight updates follow direction -g with 
scaling. Scaling is either e  when signs agree, or 1/e when signs 
disagree. 

● g ∗(clip(g,10-4) + exp(sign(g) ∗ sign(m))
● Adam ∗ exp(sign(g) ∗ sign(m))
● drop(g,0.1) ∗ exp(sign(g) ∗ sign(m))









Final notes

● Rule g ∗ exp(sign(g) ∗ sign(m)) was also applied to language 
translation with RNN yielding better accuracy than Adam

● The rule is also more memory efficient than Adam (it does 
not need to store variance estimate)

● Overall very good application of meta learning (maybe 
yielding new “default” optimizer)



Thank you for attention!


