
Meta Learning
Jakub Střelský

Machine learning

Parametric machine learning algorithms:

1. Define parametric model
2. Learn the model parameters from training data

Step 2 is typically a form of function optimization

(e.g. maximizing conditional likelihood of parameters given the
training data)

How do we make it work

● Design models that describes data well and can be learned
efficiently - very important
○ We cannot recover from poor choice of model

model complexity

○ Choice of model must reflect complexity of data
● Apply proper learning algorithm to find parameters of

selected model
● Fine-tune learning algorithm (e.g. find good

hyper-parameters for given learning instance)

Cannot describe data “Just right” Overfitting and infeasible to train

Meta learning

● Simply: Learning to learn
● Training data are instances of “similar” learning problems
● We want to make use of learning experience in order to

improve learning in future

 How ?

● Typical example: tuning of hyper-parameters of learning
● But even: altering learning algorithm or model

When to consider meta learning

● If we assume that learning instances are related, but the
relation is subtle and hard to describe mathematically

 Linear regression

 Image classification with neural networks

Neural optimizer search with
reinforcement learning

Irwan Bello, Barret Zoph, Vijay Vasudevan and Quoc V. Le

Published 2017 in ICML

http://proceedings.mlr.press/v70/bello17a.html

Neural networks

● Neural network represents function
f: X ✕ Θ→ Y

● In supervised learning scenario,
we have a set of input-target pairs (x

i
, y

i
) i = 1,2...N

● Objective function J defined for a task, e.g. MSE for
regression:

 J = (1/N) ∑
i
(f(x

i
,ፀ) - y

i
)2

Neural networks training

● Network is trained by searching minimum of J
● We calculate gradient ▽

ፀ
J (backpropagation)

● ፀ
new

 = ፀ - λ ∗ ▽
ፀ

J

Tricks

● Mini-batches
● Decaying learning rate
● Stabilizing updates
● E.g Adam (roughly):

ፀ
t+1

 = ፀ
t
 - λ

t
 ∗ m

t
 / sqrt(v

t
)

m
t
 : estimate of gradient mean

v
t
 : estimate of gradient variance

Learning optimizers

One step of (meta) learning cycle:

● Controller generates update rule △ፀ of optimizer
● We train neural network using △ፀ (ፀ

t+1
 = ፀ

t
 - △ፀ

t
)

● Reward of △ፀ is expected accuracy of neural network on
validation data

Rules
● Rules are expressions defined by binary tree
● △ፀ = λ ∗ b(u

1
(op

1
), u

2
(op

2
))

b-binary op, u
1,2

 - unary ops, op
1,2

 - operands

Operands are either inputs or expressions

Rules

● Operands:
gradient, estimated moments of gradient,
sign(gradient), Adam, RMSProp, small noise, constant…

● Unary operations u(x):
x, -x, log(abs(x)), exp(x), sign(x), clip(x,0.001)...

● Binary operations b(x,y):
Addition, subtraction, multiplication, division and b(x,y) = x

● Depth of trees was bounded by depths: 1,2 and 3

Controller

Learning details

● Controller is learned via reinforcement learning (variant of
policy gradient method)

● Target network is small convolutional network with 2
layers

● Target network is trained for 5 epochs on image
classification dataset CIFAR-10

● Learning rate of update rule is determined by choosing
best learning rate from 10-5, 10-4, … 101 after 1 epoch

Results

Discovered rules

Successful building block:

 g ∗ exp(sign(g) ∗ sign(m))

Exp is positive, so weight updates follow direction -g with
scaling. Scaling is either e when signs agree, or 1/e when signs
disagree.

● g ∗(clip(g,10-4) + exp(sign(g) ∗ sign(m))
● Adam ∗ exp(sign(g) ∗ sign(m))
● drop(g,0.1) ∗ exp(sign(g) ∗ sign(m))

Final notes

● Rule g ∗ exp(sign(g) ∗ sign(m)) was also applied to language
translation with RNN yielding better accuracy than Adam

● The rule is also more memory efficient than Adam (it does
not need to store variance estimate)

● Overall very good application of meta learning (maybe
yielding new “default” optimizer)

Thank you for attention!

