

Robot-sumo

Bc. Jan Tomášek Bc. Štěpán Havránek

Outline

Bc. Jan Tomášek

- Sumo robot rules
 - why mini sumo
- Hw design
 - Al approach
 - engineering approach
 - our robot

Bc. Štěpán Havránek

- Software architecture
 - Problem description
 - Simple/practical
 - Complex/theoretical
 - Problems
 - Out of the box thinking

Robot-sumo rules

Robot-sumo is a sport in which two robots attempt to push each other out of a circle (in a similar fashion to the sport of sumo). The robots used in this competition are called sumobots.

Robot-sumo categories

 Heavy-weight - ~56 kg, ~61cm • Light-weight - ~23 kg, ~61cm Mini-sumo - 500g, 10cm • Micro-sumo - 100g, 5cm • Nano-sumo - 2.5 cm Femto-sumo - 1cm

Heavy-weight sumo

Light-weight sumo

Mini sumo

Micro sumo

Nano sumo

Femto sumo

Mini sumo

up to 500g • dimensions ○ 10 x 10 cm, unlimited height o on start can not destroy another robot ring o diametral 77 cm no adhesion boosting allowed splitting allowed

Hw construction

Artificial intelligence

 evolution algorithms
 spring models
 box models
 why we can't use AI in construction
 our robot

Spring model

- inspired by biological muscles
- organism consists of linked set of node masses
- to provide movement some sprigs are representing a muscles
 drives in simple harmonic motion

Spring model examples Daintywalker the SodaRace mascot

Sodaplay

- game engine
 - human designed vs. genetic designed spring robots
- manual robot/races creation
 - easy sharing between participants
- problem of this method
 - extreme overfit
 - need lot of different races

3D springs

this model can be generalized to 3D
Marcel Krčah in his thesis "Evolution of Springy Organisms"

3D models examples

(a) Pyramids.

(b) Snake.

(c) Round ladder

(d) Horse

another genetic model

presented on seminar last year
boxes and joints

Genetic algorithms for sumo

- none of previous models consider what can be made (by 3D printer)
 simulation
 - very hard physical model
 - friction, adhesion
 - opponent simulation
 - "crash test"
 - best friction, best adhesion, lowest battery consumption
 - which is important ?!

Engineering solution

Our robot

Robot's software

 Inputs Sensors Numeric values • Outputs • Motors • Other devices Autonomous embedded computer

Software architecture

Straight techniques
 vs.
 "Clever" / theoretical approaches

Software architecture

 Hardcoding • Problem-specific • Fast => Lower HW requirements • Often the only possible solution System If-Then rules Infinite loop Locks

Software architecture

- Subproblems organization
 > Abstraction layers
 Input
 Output
 Logic
 Model
 States
 - Process workflow

Layered model

System Action-Interruption • On all the layers • HFSM • Extensions Priority Dependences Probability

Strategies

Simple automata
 Offensive

 Search and attack
 Defensive
 Search and run away
 Random movement
 Without fight

Search and attack strategy

Simple strategies - keep inside

Simple strategies - keep inside

Strategies

Combination of different strategies

 Superior decision automata

 Artificial intelligence techniques

 High level of abstraction

• Environment

- Partially observable
- Stochastic behaviour
- Sequential process
- Dynamic surroundings
- Continuous
- Multi-agent space

- Searching
 - What?
 - Where?
 - How to use the results?

- Classical way
 - Searched space = possible actions
 According to input
 - According to input
 - Searching for highest reward
 - Action sequence ending with victory
 - Do the result action sequence
 - o => Planning
 - Problem solved?

Planning Ignores future environment states Another AI/TI techniques Evolution algorithms Neural networks

AI Evolution approach

• Cultivating the strategy Base population • Presented simple strategies • "The genes" Quantitative values • Fit function • Selection naturally made by the fights

AI Evolution approach - concrete

Population

- Strategy programs in If-Then form
 - Expressions converted to numeric values (quantitative)
 - Added the rest unused combinations as multiplied by zero
 - Ex.
 - IF 1*FrontOptSensor THEN MoveFront(0)
 - IF 1*FrontOptSensor THEN MoveBack(1)

Al Evolution approach - concrete

- Mutation
 - Small value changes

AI NN approach

- We don't know the right results of the neural network
- We want the right synaptic weights
 Basically the same as the evolution approach

Sources

- Genetic robot design
 - <u>http://artax.karlin.mff.cuni.cz/~krcap1am/ero/doc/krcah-ices08.pdf</u>
 - Evolution of Springy Organisms by Marcel Krčah
- Sumo Robot wiki
 - <u>http://en.wikipedia.org/wiki/Robot-sumo</u>
- Soda race
 - <u>http://sodaplay.com/creators/soda/items/race</u>
- femo sumo on youtube
 - o <u>http://www.youtube.com/watch?v=n2lp7rOKB0c</u>
- Human-like and Animal-like Agents
 - <u>http://artemis.ms.mff.cuni.cz/main/tiki-index.php?page=A%20lecture%20on%20Human-like%20and%20Animal-like%20Agents</u>
- JSumo
 - o <u>http://jsumo.com</u>
- Robodoupě
 - o <u>http://robodoupe.cz</u>
- Jizhong Xiao
 - o <u>http://www-ee.ccny.cuny.edu/www/web/jxiao/</u>

Bonus

<u>http://www.youtube.com/watch?</u>
 <u>v=n2lp7rOKB0c</u>
 <u>http://www.youtube.com/watch?</u>

v=iL8IRF4wQmU