Blue Book for Bulldozers

Hajic, Havranek, Taufer, Tomasek

Problem - description

- https://www.kaggle.com/c/bluebook-forbulldozers
- The goal of the contest is to predict the sale price of heavy equipment at auction

Source data

- all data are stored in simple csv
- but there is huge amount of noise in these data
 - some bulldozers are made in year 1000
 - different YearMades attached to the same MachineID
 - strange MachineHoursCurrentMeter values
 - example:
 - SalesID 2318649
 - Value 2 483 300
 - Year made 2005
 - (2013-2005)*24*365 = 70 080 :)

Evaluation

Root Mean Squared Logarithmic Error ("RMSLE")

$$\epsilon = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\log(p_i + 1) - \log(a_i + 1))^2}$$

- p_i your predicted value
- a_i real value
- n count

Source data - relevancy

- show excel description
- is fork type or transmission relevant for final price ?
- how can we find out ?
- can we find it out manually or using some magic machine learning ?

Possible solutions

• Question-form

- FHS style
- ask people in Prague
- Genetic programming
- Neural networks

Statistics - observations

- 3/4 only once
- one piece sold 26 times
- data aren't complete

Statistics - solution

• Regression

- According to observation linear is not enough
- Polynomial is needed
 - grade about 3-4 will be enough

Statistic - what's completed

- Parsing script
- Analyzing scripts
- Observation picture diagrams generator
 - Currently running in lab

Solution?

宝宝乐益智玩具世界

- We don't know how to solve this problem
 - Let's cultivate the solution -> genetic programming
 - The buyer will be product of evolution
 - Inspiration / literature:
 - Tomáš Křen: Genetic functional programming presentation
 - Genetic programming research group http: //www.genetic-programming.com

Genetic programming

• Population

- Member = Price calculation function
 - Tree of functions :: [Price] -> Price
 - Arithmetical / logical / load / SQL history aggregation
- Fit function = difference from actual price in DB
 - same as the official
- Reproduction
 - Switch subtrees on random layer
 - ... picture diagram
- Mutation
 - change function in specific node

Genetic solution - data

• Input data (training data)

- Structured in SQL database
- Special nullary function nodes access the data
- Bulldozers table
 - Stores known bulldozers specification and price

Input object

- Bulldozer for auction
- Structure = database table row without price specified
 - [Int] numeric values
 - [Enum] enum values

Genetic solution - node functions

• Constant

• :: Price

Arithmetical

- Classical operations
- :: [Price] -> Price
 - Price is numeric type double/real
- Logical
 - if-then-else
 - <, <= ...
 - :: [Price] -> Price

Genetic solution - node functions

• Load

- :: Price
- Loads specific cell from input object
 - number value
 - mask as price and returns for next operation (usually arith.)
 - enum value
 - mask as price for only logical functions
- SQL Aggregation
 - :: Price
 - Selects from history database values
 - using aggregation function (count, max, sum...)
 - using where based on input object

Genetic solution - convergence

Solution is very generic Needs optimizations, heuristics, constraints...

Genetic solution - subproblems

- Not all data columns are dependent
- Split price calculation by column groups
 - k separated evolution runs with smaller members]
 using only few columns for loading and sql agg. functions
 - One small function for aggregation
- Columns
 - o globals
 - specials
 - ... picture diagram

Genetic solution - confidence

- During the process is calculated confidence of returned price
 - effects final aggregation
 - effects selection in evolution process
- Example
 - confidence is low when database history doesn't contains data similar to input object

Genetic solution - constraints

Constants

- Take from final universum
 - example: equally taken subset of [0,1]

• Type constraints

- Input object
 - arithmetical operations for number values
 - for enum values only logical
 - special switch

Generic

• Max deep

Genetic solution - heuristic

Startup population member Not only random generated Based on human racional guess From SQL agg. uses only avg, median... Based on other team member's results Small column groups

Genetic solution - what's done

- Team foundation server
- Generic node abstraction
- Arithmetical nodes
- Data parsing in SQL

Jakub's presentation

http://www.youtube.com/watch?v=SJI5v9QoPus

