
Hajic, Havranek, Taufer, 
Tomasek

Blue Book
for Bulldozers



Problem - description 

● https://www.kaggle.com/c/bluebook-for-
bulldozers

● The goal of the contest is to predict the 
sale price of heavy equipment at auction



Source data

● all data are stored in simple csv
● but there is huge amount of noise in these 

data
○ some bulldozers are made in year 1000
○ different YearMades attached to the same 

MachineID
○ strange MachineHoursCurrentMeter values

■ example:
● SalesID 2318649
● Value 2 483 300
● Year made 2005
● (2013-2005)*24*365 = 70 080 :)



Evaluation

● Root Mean Squared Logarithmic Error 
(“RMSLE”)

● pi - your predicted value
● ai - real value
● n - count



Source data - relevancy

● show excel description
● is fork type or transmission relevant for 

final price ?
● how can we find out ?
● can we find it out manually or using some 

magic machine learning ? 



Possible solutions 

● Question-form 
○ FHS style
○ ask people in Prague

● Genetic programming
● Neural networks



Statistics - observations

● 3/4 only once
● one piece sold 26 times
● data aren't complete
●



Statistics - solution

● Regression
○ According to observation linear is not enough
○ Polynomial is needed

■ grade about 3-4 will be enough



Statistic - what's completed

● Parsing script
● Analyzing scripts
● Observation picture diagrams generator

○ Currently running in lab



Solution?

● We don't know how to solve this 
problem
○ Let's cultivate the solution -> genetic 

programming
■ The buyer will be product of evolution

○ Inspiration / literature:
■ Tomáš Křen: Genetic functional 

programming presentation
■ Genetic programming research group http:

//www.genetic-programming.com



Genetic programming

● Population
○ Member = Price calculation function

■ Tree of functions :: [Price] -> Price
● Arithmetical / logical / load / SQL history aggregation

○ Fit function = difference from actual price in DB
■ same as the official

○ Reproduction
■ Switch subtrees on random layer
■ ... picture diagram

○ Mutation
■ change function in specific node



Genetic solution - data

● Input data (training data)
○ Structured in SQL database
○ Special nullary function nodes access the data
○ Bulldozers table

■ Stores known bulldozers specification and price
● Input object

○ Bulldozer for auction
○ Structure = database table row without price 

specified
■ [Int] numeric values
■ [Enum] enum values



Genetic solution - node functions

● Constant
○ :: Price

● Arithmetical
○ Classical operations
○ :: [Price] -> Price

■ Price is numeric type - double/real
● Logical

○ if-then-else
■ <, <= ...

○ :: [Price] -> Price



Genetic solution - node functions

● Load
○ :: Price
○ Loads specific cell from input object

■ number value
● mask as price and returns for next operation (usually arith.)

■ enum value
● mask as price for only logical functions

● SQL Aggregation
○ :: Price
○ Selects from history database values

■ using aggregation function (count, max, sum...)
■ using where based on input object



Genetic solution - convergence

● Solution is very generic
○ Needs optimizations, heuristics, constraints...



Genetic solution - subproblems

● Not all data columns are dependent
● Split price calculation by column groups

○ k separated evolution runs with smaller members]
■ using only few columns for loading and sql agg. 

functions
○ One small function for aggregation

● Columns
○ globals
○ specials
○ ... picture diagram



Genetic solution - confidence

● During the process is calculated confidence 
of returned price
○ effects final aggregation
○ effects selection in evolution process

● Example
○ confidence is low when database history doesn't 

contains data similar to input object



Genetic solution - constraints

● Constants
○ Take from final universum

■ example: equally taken subset of [0,1]
● Type constraints

○ Input object
■ arithmetical operations for number values
■ for enum values only logical

● special switch

● Generic
○ Max deep



Genetic solution - heuristic

● Startup population member
○ Not only random generated
○ Based on human racional guess

■ From SQL agg. uses only avg, median...
○ Based on other team member's results

● Small column groups



Genetic solution - what's done

● Team foundation server
● Generic node abstraction
● Arithmetical nodes
● Data parsing in SQL



Jakub's presentation

http://www.youtube.com/watch?v=SJI5v9QoPus

http://www.youtube.com/watch?v=SJI5v9QoPus
http://www.youtube.com/watch?v=SJI5v9QoPus

