
Štěpán Havránek, Pavel Taufer, Jan Tomášek

Game
algorithm
s

Game
algorithms

Jan Tomasek, Stepan Havranek,
Pavel Taufer, Jara Cimrman

Outline

● universal example
● taxonomy of games
● basic methods
● algorithms

○ minimax
○ alfa-beta
○ Scout
○ Monte Carlo

● implementation tricks
● computer players statistics
● demonstration

Universal example - piškvorky++

● our own extension of connect five
● based on general surface theory

The beginning I

● connect five on torus or klein bottle
○ too easy

● general surfaces
● two different rules for intercardinal

directions
○ up and left vs. left and up
○ both rules allowed
○ but all five connections have to follow one rule

The beginning II

● edges can be connected in two ways
○ handle vs. cross-cap
○ both allowed

● adding non-determinism

● expansion of classic connect five
○ game space - finite nonempty subset of fields

from a 2-dimensional graticule
○ tunnel - pairs of border edges

■ rotates global orientation
○ intercardinal directions - two orthogonal steps
○ goal - at least 5 traversable fields owned in one

direction
● implementation

○ board
○ check for winners

Rules of the game

Havri vs. Tomi on blackboard

Real time example

Taxonomy of games

● According to the number of players
○ one player : puzzle, sudoku
○ two player game : chess
○ multi player game : piškvorky++, poker

● According to the state information
obtained by each player
○ Perfect-information games
○ Imperfect-information games

● According to whether players can fully
control the playing of the game
○ deterministic
○ stochastic

● naive solutions
○ dictionary of all possible positions

■ chess has ~1043

● Brute-force search
○ Breadth-first search (BFS)
○ Depth-first search (DFS)
○ Iterative-deepening DFS (DFID)
○ Bi-directional search

● heuristic search
○ A*
○ IDA*

Basic methods

Minimax

● for: deterministic, complete information
● max and min player

○ max player is looking for best move assuming min
player is using optimal strategy (if not it is even
better)

Minimax example

● just another formulation of mini-max
● we are always looking for the maximum,

but with each edge we add negation

Nega-max

● extension of minimax algorithm
● heuristic for cutting "bad" branches out
● vars alpha and beta
● if values < alpha

○ not interesting vertex (we have a better one)
● if value > beta

○ not interesting vertex for opponent (he has a
better one)

Alpha - beta pruning

Alpha - beta pruning

● at beginning of alfa-beta we set
○ alpha = - infinity
○ beta = + infinity

● more information about the game
○ tighter bounds for alpha and beta

Alfa - beta Aspiration search

Scout algorithm

● While searching a branch Tb of a MAX
node, if we have already obtained a lower
bound v`

● First TEST whether it is possible for Tb to
return something greater than v`
○ If FALSE, then there is no need to search Tb.
○ If TRUE, then search Tb

Scout - idea

procedure TEST(position p, value v, condition >)
determine the successor positions p1...pd

if d = 0, then // terminal
return TRUE if f(p) > v // f is eval function
return FALSE otherwise

for i := 1 to d do
if p is a MAX node and TEST(pi, v, >) is TRUE, then return TRUE

if p is a MIN node and TEST(pi, v, >) is FALSE, then return FALSE

if p is a MAX node, then return FALSE
f p is a MIN node, then return TRUE

Scout - test procedure

determine the successor positions p1...pd

if d = 0, then return f(p)
else v = SCOUT(p1)

for i := 2 to d do
if p is a MAX node and TEST(pi, v, >) is TRUE then

v = SCOUT(pi)

if p is a MIN node and TEST(pi, v, >=) is FALSE then

v = SCOUT(pi)

return v

Algorithm SCOUT(position p)

● Assume TEST(p; 5; >) is called by the root after the
first branch is evaluated.
○ It calls TEST(K; 5; >) which skips K's second

branch.

Scout 1

SCOUT may visit a node that is cut o
 by alpha-beta

Scout 2

● benefits of both
● add alpha and beta bounds in scout test

procedure
● always 40% faster than just alpha-beta :)

○ in chess

Alpha-Beta + Scout

● endgame solvers, sub-goals during
games.

● mapping some binary goal to and-or tree
● this small problem can be solved perfectly

and the result can be used in standard
minimax

Proof-number search

● can be solved using DFS,BFS...

And - or tree

● basic Alpha-Beta
○ for all empty fields simulate game for given depth

■ either winner or eval
○ pick random with best value

● move evaluation
○ looking in all directions

Implementation Alpha-Beta Pavel

● already presented

Monte Carlo

● While have enough of memory (number of
expanded nodes) :
○ Selection

■ walk down the graph for most promising node
○ Expansion

■ compute possible moves and evaluate
○ Simulation

■ based on number of free cells in line
○ Backpropagation

■ update evaluated + simulated value through
parents

Implementation - MCTS Havri

● games often short
● first player often wins
● our implementations are better than

humans
○ computer sees complicated paths the human

usually can't handle

Observations

Statistics

Demonstration

MCTS vs. alpha-beta 0

MCTS vs. alpha-beta 1

MCTS vs. alpha-beta 2

MCTS vs. alpha-beta 3

MCTS vs. alpha-beta 4

MCTS vs. alpha-beta 5

MCTS vs. alpha-beta 6

MCTS vs. alpha-beta 7

MCTS vs. alpha-beta 8

Sources

● black tea, green tea, yellow tea, coffee, chocolate

● http://pasky.or.cz/vyuka/2012-AIL103/prez34_go_mcts.pdf

● http://pasky.or.cz/vyuka/2012-AIL103/prez2_minimax.pdf

● http://pasky.or.cz/vyuka/2012-AIL103/prez1_hernialg.pdf

● http://www.iis.sinica.edu.tw/~tshsu/tcg2010/slides/slide1.pdf

● http://www.iis.sinica.edu.tw/~tshsu/tcg2010/slides/slide2.pdf

● http://www.iis.sinica.edu.tw/~tshsu/tcg2010/slides/slide3.pdf

● http://www.iis.sinica.edu.tw/~tshsu/tcg2010/slides/slide4.pdf

