Probabilistic model of Episodic Memory

Rudolf Kadlec rudolf.kadlec@gmail.com Charles University in Prague

Episode is a sequence of events

- Episodes are hierarchical
- Episodes have schemas

Training

Remembered

- Encoding
 - Segment events according to schemas
 - Inference of episode hierarchy
 - » Event segmentation theory [Zacks and Tversky, 2001]
 - Encode episode with respect to the schema
 - » Fuzzy-trace theory [Brainerd and Reyna, 2005]
- Storage
 - Forgetting
- Retrieval
 - Reconstructive memory retrieval

LET'S GET FORMAL

Dynamic Bayesian Networks

- Encoding
 - Segment events according to schemas
 - Inference of episode hierarchy
 - Encode episode with respect to the schema
- Storage
 - Forgetting
- Retrieval
 - Reconstructive memory retrieval

Example

$$P(x \rightarrow y) = 1/3$$
$$P(x \rightarrow x) = 2/3$$

Activity interpretation

We need different model

H_t ... unobserved/hidden/latent variable G, O ... in training data

H represents probabilistic FSM associated with G

How to get FSMs represented by H?

Hand code them \dots \otimes

Learn them! ~ EM algorithm

F_t ... finish variable F labels states in D(H) where the episode ends

- Encoding
 - Segment events according to schemas
 - Inference of episode hierarchy
 - Encode episode with respect to the schema
- Storage
 - Forgetting
- Retrieval
 - Reconstructive memory retrieval

- Encoding
 - Segment events according to schemas
 - Inference of episode hierarchy
 - Encode episode with respect to the schema
- Storage
 - Forgetting
- Retrieval
 - Reconstructive memory retrieval

- Idea
 - remember event where prior and posterior distributions differ most.
- Tool
 - Kullback-Liebler divergence (information gain, information divergence, relative entropy)

 $KL(P \to Q) = \sum_{i} P(i) ln \frac{P(i)}{Q(i)}$

- 1. Pick most memorable event
- 2. Reconstruct episode given memory of this event

First iteration

Second iteration

Mems = { $g_{0:5}$ =x, o_8 =c}

- Encoding
 - Segment events according to schemas
 - Inference of episode hierarchy
 - Encode episode with respect to the schema
- Storage
 - Forgetting
- Retrieval

- Reconstructive memory retrieval

Time remembered (days)

- Encoding
 - Segment events according to schemas
 - Inference of episode hierarchy
 - Encode episode with respect to the schema
- Storage
 - Forgetting
- Retrieval
 - Reconstructive memory retrieval

$P(O_{0:t}|semantic, mems)$

What we have for free

... HUH?

• Measure of surprise - G

What we have for free

Measure of certainty - Entropy(G)

Next steps

HTN planner
– Monroe corpus

Memory creation KL

Thanks to

- <u>klsmith77</u> for photo of tightrope walker (<u>http://www.sxc.hu/photo/577013</u>)
- XKCD graphics used on slides 26, 53 and 54 (<u>http://xkcd.com/1110/</u>, <u>http://xkcd.com/1126/</u>, <u>http://xkcd.com/1120/</u>)