Úvod do umělé inteligence | Umělá inteligence I | Umělá inteligence II

Seminář z umělé inteligence I a II
0/2 Zk

Roman Barták, KTIML


Témata  |  Seminář  |  Zápočet  |  Kontakt

Výběrový referativní seminář o umělé inteligenci (UI) věnovaný aktuálním tématům a trendům umělé inteligence. Referovaná témata rozšiřují látku probíranou v základním kurzu umělé inteligence. Vhodné pro všechny studenty se zájmem o danou problematiku. Možnost čerpat náměty pro bakalářské a diplomové práce i pro softwarové projekty.

The past seminars can be found at the following page.


Témata:

Probíraná témata mohou čerpat z následujícího seznamu:

  • řešení úloh, prohledávání, řešení her, omezující podmínky, logika, reprezentace znalostí, plánování
  • neurčitost, rozhodování za nejistoty, učení, zpracování přirozeného jazyka, neuronové sítě, strojové učení
  • robotika, počítačové vidění, multi-agentní systémy, UI v kosmu, UI a armáda, filozofické pojetí UI
  • význačné osobnosti UI (Turing, McCarty, Minski, Newell, ..) a jejich konkrétním přínos
  • klíčových projekty v historii UI (Shakey, DeepBlue, Watson, Grand Challenge, Robocup, ...)
  • ...

Další zdroje lze hledat na hlavních konferencích o umělé inteligenci AAAI a IJCAI, případně na stránkách předchozích ročníků semináře.

V roce 2015 je možno (z fakutních počítačů) přistupovat na PDF všech knih ze série Synthesis Lectures on Artificial Intelligence and Machine Learning vydavatelství Morgan & Claypool Publishers.


Seminar     ZS 2024/2025 (NAIL004):
Středa (Wednesday) 09:00 - 10:30, lecture room S7 (Malá Strana, 2nd floor)

Seminar will run in English (Czech on demand) and it will be organized as a series of Oxford-style debates on various AI-related topics (the topics discussed in recent years can be found at the seminar history page). Each side of the debate will be represented by two students (two "for" and two "against") pluse there will be a moderator. The side to which a student is allocated does not necessarily reflect his/her personal opinion!

Between the Oxford Debates we will include presentations of papers by students.

To get the credit, student is supposed to participate in one debate, to give one presentation, and to actively participate in at least ten seminars (two more seminars may be missed in exchange for a written report).

 
02.10. 2024 Kick-off meeting  
09.10. 2024 Groups formation and topics distribution  
16.10. 2024

Oxford Debate
Can AI genuinely create art rivaling humans?
[Human and Artificial Creativity] [Can Computers Create Art?] [Can AI Be as Creative as Humans?]
Adamyan Alen, Kumar Aryan, Sauerová Markéta, Tichý Šimon

before: 25% (for) - 75% (against)
after: 57% (for) - 43% (against)
23.10. 2024

Oxford Debate
Will AI personalization algorithms create societal biases among people?

  • Samuels, Mark Gregory,  Review of The Filter Bubble: What the Internet is Hiding from You. [PDF]
  • Bozdag, E. (2013). Bias in algorithmic filtering and personalization. Ethics and Information Technology. [link]
  • Pariser, E. (2011). The Filter Bubble: What the Internet is Hiding from You. [link]
  • Nguyen, T., Hui, P., Harper, F. M., Terveen, L., Konstan, J. A. (2014). Exploring the filter bubble: The effect of using recommender systems on content diversity. In Proceedings of the 23rd International Conference on World Wide Web (pp. 677-686). [link]
  • Bakshy, E., Messing, S., Adamic, L. A. (2015). Exposure to ideologically diverse news and opinion on Facebook. Science, 348(6239) [link]
  • Flaxman, S., Goel, S., Rao, J. M. (2016). Filter bubbles, echo chambers, and online news consumption. Public Opinion Quarterly, 80(S1), 298-320.[link]
Smajljaj Penda, Ahmadov Avazagha, Hovsepyan Mkrtich, Biriukova Kateryna

before: 67% (for) - 33% (against)
after: 45% (for) - 55% (against)
30.10. 2024 Paper presentations (2x)
Adamyan Alen (Generative Agents: Interactive Simulacra of Human Behavior),
Hovsepyan Mkrtich (Highly accurate protein structure prediction with AlphaFold)
 
06.11. 2024 Oxford Debate
Can AI be a judge?
Galteva Daria, Plot Jan, Šebesta Adam, Trujillo Reino Antonio
before: 22% (for) - 78% (against)
after: 23% (for) - 77% (against)
13.11. 2024

Paper presentations (4x)
Kumar Aryan (Modeling and leveraging intuitive theories to improve vaccine attitudes),
Plot Jan (Bridging Evolutionary Algorithms and Reinforcement Learning: A Comprehensive Survey on Hybrid Algorithms),
Smajljaj Penda (Regularized Evolution for Image Classifier Architecture Search),
Šebesta Adam (Deadline-Aware Multi-Agent Tour Planning)

 
20.11. 2024 Oxford Debate
Should students be allowed to use AI tools like ChatGPT for their assignments?
Dolník Karel, Lyu Seonkyeong, Nemjo Martin, Ságová Sabína
before: 80% (for) - 20% (against)
after: 44% (for) - 56% (against)
27.11. 2024 Paper presentations (4x)
Dolník Karel (Text authorship classification with unknown authors),
Lyu Seonkyeong (Attention Is All You Need),
Ságová Sabína (Socially Responsible AI Algorithms: Issues, Purposes, and Challenges),
Tichý Šimon (SAM 2: Segment Anything in Images and Videos)
 
04.12. 2024 Oxford Debate
Topic TBA
Kumar Rishikesh
11.12. 2024 Paper presentations (4x)
Nemjo Martin,
Sauerová Markéta (Scalable Rail Planning and Replanning: Winning the 2020 Flatland Challenge),
Trujillo Reino Antonio (Can Large Language Models Reason and Plan?)
 
18.12. 2024 Paper presentations (4x)
Ahmadov Avazagha (Generative Adversarial Networks),
Biriukova Kateryna,
Galteva Daria,
Kumar Rishikesh
 
08.01. 2025 Backup  

Oxford debate schedule:

  • prior debate:
    • Each side is requested to send one reference (web link, paper, etc.) to the teacher at least one week before the debate and this reference will be publicly available through the seminar web page.
  • debate day (Wednesday):
    • introduction of the topic by the moderator (5-10 minutes)
    • initial anonymous voting of audience (the result will be revealed after the discussion)
    • opening remarks (each speaker will have 2 minutes for the initial statement supporting his/her side; the order of sides is selected randomly at the beginning, speakers from both sides speak on a rota basis)
    • intra-panel discussion (between the speakers and the moderator with chance to react to the other side; 10-20 minutes)
    • Q&A (questions/comments from the audience with response from the speakers;  20-30 minutes)
    • closing remarks (each speaker will have 1 minute; the order is reverse to the opening order)
    • final anonymous voting of audience
    • decision of the winner (the side with the increase of number of votes wins)

Some examples of papers for presentation:

  1. Chad Hogg, Hector Munoz-Avila, and Ugur Kuter: HTN-Maker: Learning HTNs with Minimal Additional Knowledge Engineering Required. In Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (AAAI-08). AAAI Press.
  2. Pat Langley: Learning Hierarchical Problem Networks for Knowledge-Based Planning. ILP 2022: 69-83
  3. Songtuan Lin, Daniel Höller, Pascal Bercher: Modeling Assistance for Hierarchical Planning: An Approach for Correcting Hierarchical Domains with Missing Actions. SOCS 2024: 55-63
  4. Songtuan Lin, Alban Grastien, Pascal Bercher: Towards Automated Modeling Assistance: An Efficient Approach for Repairing Flawed Planning Domains. AAAI 2023: 12022-12031
  5. D. Nau, T.-C. Au, O. Ilghami, U. Kuter, W. Murdock, D. Wu, and F.Yaman: SHOP2: An HTN Planning System. JAIR, volume 20, pp. 379-404, 2003.
  6. Pascal Bercher, Shawn Keen, Susanne Biundo: Hybrid Planning Heuristics Based on Task Decomposition Graphs. SOCS 2014: 35-43
  7. Robert P. Goldman, Ugur Kuter, and Richard G. Freedman. Stable plan repair for state-space HTN planning. HPlan Workshop 2020
  8. Pascal Bercher, Ron Alford, Daniel Höller: A Survey on Hierarchical Planning - One Abstract Idea, Many Concrete Realizations. IJCAI 2019: 6267-6275
  9. Keisuke Okumura: LaCAM: Search-Based Algorithm for Quick Multi-Agent Pathfinding. AAAI 2023: 11655-11662
  10. J. Li, Z. Chen, Y. Zheng, S.-H. Chan, D. Harabor, P. Stuckey, H. Ma and S. Koenig. Scalable Rail Planning and Replanning: Winning the 2020 Flatland Challenge. In Proceedings of the International Conference on Automated Planning and Scheduling (ICAPS), 477-485, 2021.
  11. Subbarao Kambhampati: Can Large Language Models Reason and Plan? Annals of New York Academy of Sciences. March 2024.
  12. Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, Subbarao Kambhampati: On the Planning Abilities of Large Language Models -- A Critical Investigation. NeurIPS 2023.
  13. Karthik Valmeekam, Kaya Stechly, Subbarao Kambhampati: LLMs Still Can't Plan; Can LRMs? A Preliminary Evaluation of OpenAI's o1 on PlanBench, Preprint on Arxiv, Sept 2024.
  14. Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, Mehrdad Farajtabar: GSM-Symbolic: Understanding the Limitations of Mathematical Reasoning in Large Language Models. arXiv:2410.05229
  15. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin: Attention Is All You Need. CoRR abs/1706.03762 (2017)
  16. Yi Tay, Mostafa Dehghani, Dara Bahri, Donald Metzler: Efficient Transformers: A Survey. CoRR abs/2009.06732 (2020)
  17. Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid Palangi, Marco Tulio Ribeiro, Yi Zhang: Sparks of Artificial General Intelligence: Early experiments with GPT-4. CoRR abs/2303.12712 (2023)
  18. Yann LeCun: A Path Towards Autonomous Machine Intelligence, OpenReview.net, 2022

Zápočet : 

Zápočet je udělen za aktivní přístup k semináři. Přesná charakteristika "aktivního přístupu" bude určena vždy na začátku semestru podle konkrétní podoby semináře


Kontakt:
 

prof. RNDr. Roman Barták, Ph.D.

Katedra teoretické informatiky a matematické logiky
Matematicko-fyzikální fakulta Univerzity Karlovy

Malostranské nám. 2/25, 118 00 Praha 1
Czech Republic

e-mail: bartak (AT) ktiml.mff.cuni.cz
tel: +420 951 554 242