
Artificial	Intelligence

Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

Consider	the	problem	of
learning	to	play	chess.
A	supervised	learning	agent	needs	to	be	told	the	
correct	move	for	each	position	it	encounters.
– but	such	feedback	is	seldom	available

In	the	absence	of	feedback,	an	agent	can	learn	a	
transition	model	for	its	own	moves	and	and	can	
perhaps	learn	to	predict	the	opponent's	moves.
– without	some	feedback about	what	is		good	and	
what	is	bad,	the	agent	will	have	no	grounds	for	
deciding	which	move	to	make

Motivation

Feedback

A	typical	kind	of	feedback	 is	called	a	reward,	or	
reinforcement
– in	games	like	chess,	the	reinforcement	 is	received	only	
at	the	end	of	the	game

– in	other	problems,	the	rewards	come	more	frequently	
(in	ping-pong,	each	point	scored	can	be	considered	a	
reward)

The	reward	is	part	of	the	input	percept,	but	the	
agent	must	be	“hardwired”	to	recognize	that	part	as	
a	reward
– pain	and	hunger	are	negative	rewards
– pleasure	and	food	intake	are	positive	rewards

Reinforcement	learning

Reinforcement	learning	might	be	considered
to	encompass	all	of	artificial	intelligence:

– an	agent	is	placed	in	an	environment	and
must	learn	to	behave	successfully	therein

– in	many	complex	domains,	reinforcement	learning	is
the	only	feasible	way	to	train	a	program	to	perform
at	high	levels

We	will	consider	three	of	the	agent	designs
– a utility-based	agent learns	a	utility	function	and	uses	it	to	select	actions	

that	maximize	the	expected	outcome	utility
• must	also	have	a	model	of	the	environment,	because	it	must	know	the	states	to	

which	its	actions	will	lead
– a Q-learning	agent	learns	an	action-utility	function	(Q-function)	giving	the	

expected	utility	of	taking	a	given	action	in	a	given	state
– a reflex	agent	learns	a	policy	that	maps	directly	from	states	to	actions

The	task	of passive	learning	is	to	learn	the	utilities	of	the	states,	where	
the	agent’s	policy	is	fixed.
In	active	learning	the	agent	must	also	learn	what	to	do.

– It	involves	some	form	of	exploration:	an	agent	must	experience	as	much	
as	possible	of	its	environment	in	order	to	learn	how	to	behave	in	it.

Passive	reinforcement	learning

The	agent‘s	policy	is	fixed	(in	state	s,
it	always	executes	the	action	!(s)).
The	goal	is	to	learn	how	good	the
policy	is	,	that	is,	to	learn	the	utility
function U!(s)	=	E[Σt=0,…,∞ $t.R(st)]
The	agent	does	not	know	the	transition	model	P(s‘|s,a)	
nor	does	it	know	the	reward	function	R(s).
A	core	approach:

– the	agent	executes	a	set	of	trials	in	the	environment	using	
its	policy !

– its	percept	supply	both	the	current	state	and	the	reward	
received	at	that	state

(1,1)-0.04→ (1,2)-0.04→ (1,3)-0.04→ (1,2)-0.04→ (1,3)-0.04→ (2,3)-0.04→ (3,3)-0.04→ (4,3)+1
(1,1)-0.04→ (1,2)-0.04→ (1,3)-0.04→ (2,3)-0.04→ (3,3)-0.04→ (3,2)-0.04	→ (3,3)-0.04→ (4,3)+1
(1,1)-0.04→ (2,1)-0.04→ (3,1)-0.04→ (3,2)-0.04→ (4,2)-1

Direct	utility	estimation

The	idea	is	that	the	utility	of	a	state	is	the	expected	total	
reward	from	that	state	onward	(expected	reward-to-go).

– for	state	(1,1)	we	get	a	sample	total	reward	0.72	in	the	first	trial
– for	state	(1,2)	we	have	two	samples	0.76	and	0.84	in	the	first	trial

The	same	state	may	appear	in	more	trials	(or	even	in	the	same	
trial)	so	we	keep	running	average	for	each	state.
Direct	utility	estimation	is	just	an	instance	of	supervised	
learning	(input	=	state,	output	=	reward-to-go)
Major	inefficiency:

– The	utilities	of	states	are	not	independent!
– The	utility	values	obey	the	Bellman	equations	for	a	fixed	policy
U!(s)	=	R(s)	+	$ Σs‘ P(s‘|s,	!(s))	U!(s‘)

– We	search	for	U	in	a	hypothesis	space	that	is	much	larger	than	it	
needs	to	be	(it	includes	many	functions	that	violate	the	Bellman	
equations);	for	this	reason,	the	algorithm	often	converges	very	
slowly.

Adaptive	dynamic	programming

An adaptive	dynamic	programming	(ADP)	agent	
takes	advantage	of	the	Bellman	equations.
The	agent	learns:
– the	transition	model	P(s‘|s,	!(s))

• Using	the	frequency	with	which	s	 is	reached	when	executing	
a	in	s.	For	example	P((2,3)|(1,3),	Right)	=	2/3.

– rewards	R(s)
• directly	observed

The	utility	of	states	is	calculated	from	the	Bellman	
equations,	 for	example	using	the	modified	policy	
iteration.

ADP	algorithm

Temporal-difference	learning

We	can	use	the	observed	transitions	to	adjust	utilities	of	the	states	so	
that	they	agree	with	the	constraint	equations.

Example:
– consider	the	transitions	from	(1,3)	to (2,3)
– suppose	that,	as	a	result	of	the	first	trial,	the	utility	estimates	are

U!(1,3)	=	0.84	and	U!(2,3)	=	0.92
– if	this	transition	occurred	all	the	time,	we	would	expect	the	utility	to	

obey	the	equations	(if	$ =	1)
U!(1,3)	=	-0.04	+	U!(2,3)	

– so	the	utility	would	be
U!(1,3)	=	0.88

– hence	the	current	estimate	U!(1,3)	might	be	a	little	low	and	should	be	
increased

In	general,	we	apply	the	following	update	(&	is	the	learning	rate	
parameter):

U!(s)	← U!(s)	+	&.(R(s)	+	$.U!(s‘)	- U!(s))
The	above	formula	is	often	called	the	temporal-difference (TD)	equation.

TD	algorithm

Comparison	of	ADP	and	TD

Both	ADP	and	TD	approaches	try	to	make	local	adjustments	to	the	utility	
estimates	in	order	to	make	each	state	„agree“	with	its	successors.
• Temporal	difference

– does	not	need	a	transition	model	to	perform	updates
– adjusts	a	state	to	agree	with	its	observed successor
– a single	adjustment	per	observed	transition

• Adaptive	dynamic	programming
– adjusts	a	state	to	agree	with	all of	the	successors
– makes	as	many	adjustments	as	it	needs	to	restore

consistency	between	the	utility	estimates

First time reaches a
state with reward -1

Active	reinforcement	learning

A	passive	learning	agent	has	a	fixed	policy	that	determines	its	
behavior.
An active	agent	must	decide	what	actions	to	take.
Let	us	begin	with	the	adaptive	dynamic	programming	agent

– the	utilities	it	needs	to	learn	are	defined	by	the	optimal	policy;	
they	obey	the	Bellman	equations
U!(s)	=	R(s)	+	$ maxa Σs‘ P(s‘|s,	a)	U!(s‘)

– these	equations	can	be	solved	to	obtain	the	utility	function
What	to	do	at	each	step?

– the	agent	can	extract	an	optimal	action	to	maximize	the	
expected	utility

– then	it	should	simply	execute	the	action	the	optimal	policy	
recommends

– Or	should	it?

Greedy	agent

An	example	of	policy	found	by
the	active	ADP	agent.
This	is	not	an	optimal	policy!
What	did	happen?

The	agent	found	a	route	(2,1),	(3,1),	(3,2),	(3,3)	to	the	goal	
with	reward	+1.
After	experimenting	with	minor	variations,	it	sticks	to	
that	policy.
As	it	does	not	learn	utilities	of	the	other	states,	it	never	
finds	the	optimal	route	via	(1,2),	(1,3),	(2,3),	(3,3).
We	call	this	agent	the	greedy	agent.

Properties	of	greedy	agents

How	can	it	be	that	choosing	the	optimal	action	leads	to	
suboptimal	results?

– the	learned	model	is	not	the	same	as	the	true	
environment;	what	is	optimal	in	the	learned	model	can	
therefore	be	suboptimal	in	the	true	environment

– actions	do	more	than	provide	rewards;	they	also	contribute	
to	learning	the	true	model	by	affecting	the	percepts	that	
are	received

– by	improving	the	model,	the	agent	will	receive	greater	
rewards	in	the	future

An	agent	therefore	must	made	tradeoff	between	
exploitation to	maximize	 its	reward	and	exploration to	
maximize	 its	long-term	well-being.

Exploration

What	is	the	right	trade-off	between	exploration	and	
exploitation?

– pure	exploration	is	of	no	use	if	one	never	puts	that	
knowledge	in	practice

– pure	exploitation	risks	getting	stuck	in	a	rut
Basic	idea

– at	the	beginning	striking	out	into	the	unknown	in	the	
hopes	of	discovering	a	new	and	better	life

– with	greater	understanding	less	exploration	is	necessary
An	n-armed	bandit

– a	slot	machine	with	n-levers
(or	n	one-armed	slot	machines)

Which	lever	to	play?
• The	one	that	has	paid	off	best,
or	maybe	one	that	has	not	been	tried?

Exploration	policies

The	agent	chooses	a	random	action	a	fraction	1/t	of	the	time	and	follows	the	
greedy	policy	otherwise

– it	does	eventually	converge	to	an	optimal	policy,	but	it	can	be	extremely	slow

A	more	sensible	approach	would	give	some	weight	to	actions	that	the	agent	has	
not	tried	very	often,	while	tending	to	avoid	actions	that	are	believed	to	be	of	
low	utility.

– assign	a	higher	utility	estimate	to	relatively	unexplored	state-action	pairs
– value	iteration	may	use	the	following	update	rule

U+(s)	← R(s)	+)maxa f(*s‘ P(s‘|s,	a)	U+(s‘),	N(s,a))
• N(s,a)	is	the	number	of	times	action	a has	been	tried	in	state	s
• U+(s)	denotes	the	optimistic	estimate	of	the	utility
• f(u,n)	is	called	the	exploration	function;	 it	determines	how	greed	is	traded	off	against	

curiosity	(should	be	increasing	in	u	 and	decreasing	in	n)
– for	example	 f(u,n)	=	R+ if	n<Ne,	 otherwise	 u

(R+ is	an	optimistic	 estimate	 of	the	best	 possible	 reward	obtainable	 in	any	state)
The	fact	that	U+ rather	than	U	appears	in	the	right-hand	side	 is	very	important.

• As	exploration	proceeds,	the	states	and	actions	near	the	start	might	well	be	tried	a	large	
number	of	times.

• If	we	used	U,	the	more	pessimistic	utility	estimate,	then	the	agent	would	soon	become	
disinclined	to	explore	further	afield.

• The	benefits	of	exploration	are	propagated	back	from	the	edges	of	unexplored	regions	so	
that	actions	that	lead	toward	unexplored	regions	are	weighted	more	highly.

Q-learning

Let	us	now	consider	how	to	construct	an	active	temporal-difference	
learning	agent.

– The	update	rule	remains	unchanged:
U(s)	← U(s)	+	&.(R(s)	+	$.U(s‘)	 - U(s))

– The	model	acquisition	problem	for	the	TD	agent	is	identical	to	that	for	
the	ADP	agent.

There	is	an	alternative	TD	method,	called	Q-learning
– Q(s,a)	denotes	the	value	for	doing	action	a	in	state	s
– the	q-values	are	directly	related	to	utility	values	as	follows:

• U(s)	=	maxa Q(s,a)
– the	TD-agent	that	learns	a	Q-function	does	not	need	a	model	form	

P(s‘|s,	a)
• Q-learning	is	called	a	model-free	method

– we	can	write	a	constraint	equation	that	must	hold	at	equilibrium:
• Q(s,a)	=	R(s)	+	$ Σs‘ P(s‘|s,	a)	maxa‘ Q(s‘,a‘)
• This	does	require	that	a	model	P(s‘|s,	a)	also	be	learned!

– The	TD	approach	requires	no	model	of	state	transitions	– all	it	needs	
are	the	Q	values
• Q(s,a)	← Q(s,a)	+	+.(R(s)	+)maxa‘	Q(s‘,a‘)	- Q(s,a))
• it	is	calculated	whenever	action	a	is	executed	in	state	s	leading	to	state	s’

Q-learning	algorithm

SARSA

State-Action-Reward-State-Action
• a	close	relative	to	Q-learning	with	the	following	update	rule

Q(s,a)	← Q(s,a)	+	+.(R(s)	+).Q(s‘,a‘)	- Q(s,a))
• the	rule	is	applied	at	the	end	of	each	s,a,r,s‘,a‘	 quintuplet,	

i.e.	after	applying	action	a’
Comparison	of	SARSA	and	Q-learning:

– for	a	greedy	agent	the	two	algorithms	are	identical	(the	action	a‘	
maximizing	Q(s‘,a‘)	is	always	selected)

– When	exploration	is	assumed	there	is	a	subtle	difference
• Q-learning	pays	no	attention	to	the	actual	policy	being	followed	– it	is	
an	off-policy	learning	algorithm	(can	learn	how	to	behave	well	even	
when	guided	by	a	random	or	adversarial	exploration	policy)

• SARSA	is	more	realistic:	it	is	better	to	learn	a	Q-function	for	what	
actually	happen	rather	than	what	the	agent	would	like	to	happen
– works	if	the	overall	policy	is	even	partly	controlled	by	other	agents

Final	notes

Both	Q-learning	and	SARSA	learn	the	optimal	policy,	but	do	so	
at	much	slower	rate	than	the	ADP	agent.

– the	local	updates	do	not	enforce	consistency	among	all	the	Q-
values	via	the	model

Is	it	better	to	learn	a	model	and	a	utility	function	(ADP)	or	to	
learn	an	action-utility	function	with	no	model	(Q-learning,	
SARSA)?

– One	of	the	key	historical	characteristics	of	much	of	AI	research	is	
its	adherence	to	the	knowledge-based	approach;	this	adheres	
to	assumption	that	the	best	way	to	represent	the	agent	function	
is	to	build	a	representation	of	some	aspects	of	the	environment	
in	which	the	agent	is	situated.

– Availability	of	model-free	methods	such	as	Q-learning	means	
that	the	knowledge-based	approach	is	unnecessary.

– Intuition	is	that	as	the	environment	becomes	more	complex,	the	
advantages	of	knowledge-based	approach	become	more	
apparent.

© 2016 Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

bartak@ktiml.mff.cuni.cz

