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Rational	decisions

We	are	designing	rational	agents	that	maximize	
expected	utility.
Probability	theory	is	a	tool	for	dealing	with	
degrees	of	belief	(about	world	states,	action	
effects	etc.).
Now,	we	explore	utility	theory	to	represent	and	
reason	with	preferences.

Finally,	we	combine	preferences	(as	
expressed	by	utilities)	with	
probabilities	in	the	general	theory	
of	rational	decisions	– decision	
theory.



Utility	theory

The	agent‘s	preferences	are	captured	by	a	utility	
function,	U(s),	which	assigns	a	single	number	to	
express	desirability	of	a	state.
The	expected	utility	of	an	action	given	the	evidence	
is	just	the	average	value	of	outcomes,	weighted	by	
their	probabilities
EU(a|e)	=	∑s P(Result(a)=s|a,e)	U(s)

A	rational	agent	should	choose	the	action	that	
maximizes the	agent’s	expected	utility	(MEU)
action	=	argmaxa EU(a|e)

The	MEU	principle	formalizes	the	general	notion	
that	the	agent	should	“do	the	right	thing”,	but	we	
need	make	it	operational.

Rational	preferences

Frequently,	it	is	easier	for	an	agent	to	express	preferences
between	states:

– A	>	B:	the	agent	prefers	A	over	B
– A	<	B:	the	agent	prefers	B	over	A
– A	~	B:	the	agent	is	indifferent	between	A	and	B

What	sort	of	things	are	A	and	B?
– They	could	be	states	of	of	the	world,	but	more	often	tan	not	there	

is	uncertainty	about	what	is	really	being	offered.
– We	can	think	of	the	set	of	outcomes	for	each	action	as	a	lottery

(possible	outcomes	S1,	…,	Sn that	occur	with	probabilities	p1,	…,	pn)
• [p1,S1;	…;	pn,Sn]

An	example	of	lottery	(food	in	airplanes)
Chicken	or	pasta?

– [0.8,	juicy	chicken;	0.2,	overcooked	 chicken]
– [0.7,	delicious	pasta;	0.3,	congealed	pasta]



Properties	of	rational	preferences

Rational	preferences	should	lead	to	maximizing	expected	
utility	(if	the	agent	violates	them	it	will	exhibit	patently	
irrational	behavior	in	some	situations.
We	require	several	constraints	(the	axioms	of	utility	theory)	
that	rational	preferences	should	obey.

– orderability:
exactly	one	of	(A	>	B)	or	(A	<	B) or	(A	~	B)	holds

– transitivity:
(A	<	B)	∧ (B	<	C)⇒ (A	<	C)

– continuity:
(A	>	B	>	C)	⇒ ∃p	[p,A;	1-p,C] ~	B

– substitutability:
A	~	B⇒ [p,A;	1-p,C] ~ [p,B;	1-p,C]

– monotonicity:
A	>	B	⇒ (p	>	q	⇔ [p,A;	1-p,B] >	[q,A;	1-q,B]

– decomposability:
[p,A;	1-p,	[q,B;	1-q,C]] ~ [p,A;	(1-p)q,B;	(1-p)(1-q),C]

Preferences	lead	to	utility

Teh axioms	of	utility	theory	are	axioms	about	preferences	but	
we	can	derive	the	following	consequences	form	them..

Existence	of	utility	function	such	that	:
U(A)	<	U(B)	⇔ A	<	B
U(A)	=	U(B)	⇔ A	~	B

Expected	utility	of	a	lottery:
U([p1,S1;	…;	pn,Sn] )	=	∑i pi U(Si)

A	utility	function	exists	for	any	rational	agent	but	it	is	not	
unique:

U‘(S)	=	a	U(S)	+	b
Existence	of	a	utility	function	does	not	necessarily	mean	that	
the	agent	is	explicitly	maximizing	that	utility	function.	By	
observing	its	preferences	an	observer	can	construct	the	utility	
function	(even	if	the	agent	does	not	know	it).



Utility	functions

Utility	is	a	function	that	maps	from	lotteries	to	real	
numbers.
We	must	first	work	out	what	the	agent‘s	utility	function	is	
(preference	elicitation).

– We	will	be	looking	for	a	normalized	 utility	function.
– We	fix	the	utility	of	a	“best	possible	prize”	Smax to	1,
U(Smax)	=	1.

– Similarly,	a	“worst	possible	catastrophe”	Smin is	mapped	to	0,	
U(Smin)	=	0.

– Now,	to	assess	the	utility	of	any	particular	prize	S	we	ask	the	
agent	to	choose	between	S	and	a	standard	 lottery
[p, Smax;	1-p, Smin]

– The	probability	p	is	adjusted	until	the	agent	is	indifferent	
between	 S	and	the	standard	lottery.

– Then	the	utility	of	S	is	given	by,	U(S)	=	p.

The	utility	of	money

Universal	exchangeability	of	money	for	all	kinds	of
goods	and	services	suggests	that	money	plays	a
significant	role	in	human	utility	functions.

– An	agent	prefers	more	money	 to	less,	all	other	things
being	equal.

But	this	does	not	mean	that	money	behaves	as	a	utility	
function	(because	it	says	nothing	about	preferences	between	
lotteries	involving	money).
Assume	that	you	won	a	competition	and	the	host	offers	you	a	
choice:	either	you	can	take	the	1	mil.	USD	price	or	you	can	
gamble	it	on	the	flip	of	coin.	If	the	coin	comes	up	heads,	 you	
end	up		with	nothing,	 but	if	it	comes	up	tails,	you	get	2.5	mil.	
USD.
What	is	your	choice?

– Expected	monetary	 value	of	the	gamble	is	1.250.000	USD.
– Most	people	decline	the	gamble	and	pocket	the	million.	Are	

they	being	irrational?



the utility of money

The	utility	of	money

The	decision	in	the	previous	game	does	not	depend	on	the	prize	only	
but	also	on	the	wealth	of	the	player!
Let	Sn denote	a	state	of	possessing	total	wealth	n	USD,	and	the	current	
wealth	is	k	USD.
The	the	expected	utilities	of	two	actions	are:

– EU(Accept)	=	½	U(Sk)	+	½	U(Sk+2.500.000)
– EU(Decline)	=	U(Sk+1.000.000)

Suppose	we	assign	U(Sk)	=	5,	U(Sk+1.000.000)	=	8,	U(Sk+2.500.000)	=	9.
Then	the	rational	decision	would	be	to	decline!

risk-averse area (prefer a 
sure thing with a payoff less 
than the expected monetary 
value of a gamble)

risk-seeking behavior in 
this area

an agent that has a linear 
curve is said to be risk-
neutral.

Human	judgment	(certainty	effect)

The	evidence	suggests	that	humans	are	“predictable	
irrational	“.
Allais	paradox

– A:	80%	chance	of	4000	USD
– B:	100%	chance	of	3000	USD

What	is	your	choice?
• Most	people	consistently	prefer	B	over	A	(taking	the	sure	thing!)

– C:	20%	chance	of	4000	USD
– D:	25%	chance	of	3000	USD

What	is	your	choice?
• Most	people	prefer	C	over	D	(higher	expected	monetary	value)

Certainty	effect	– people	are	strongly	attracted	to	gains	
that	are	certain



Human	judgment	(ambiguity	aversion)

Ellsberg	paradox
The	urn	contains	1/3	red	balls,	and	2/3	either	black	or	yellow	
balls.
– A:	100	USD	for	a	red	ball
– B:	100	USD	for	a	black	ball

What	is	your	choice?
• Most	people	prefer	A	over	B	(A	gives	a	1/3	chance	of	winning,	while	B	
could	be	anywhere	between	0	and	2/3)

– C:	100	USD	for	a	red	or	yellow	ball
– D:	100	USD	for	a	black	or	yellow	ball

What	is	your	choice?
• Most	people	prefer	D	over	C	(D	gives	you	a	2/3	chance,	while	C	could	
anywhere	between	1/3	and	3/3)

However,	if	you	think	there	are	more	red	than	black	balls	then	
your	should	prefer	A	over	B	and	C	over	D.

Ambiguity	aversion	– most	people	elect	the	known	
probability	rather	than	the	unknown	unknown.

Human	judgment

Framing	effect	– the	exact	wording	of	a	decision	problem	
can	have	a	big	impact	on	the	agent‘s	choices

– medical	procedure	A	has	90%	survival	rate
– medical	procedure	B	has	10%	death	rate

What	is	your	choice?
• Most	people	prefer	A	over	B	though	both	choices	are	identical

Anchoring	effect	– people	feel	more	comfortable	making	
relative	utility	judgments	rather	than	absolute	ones

– The	restaurant	takes	advantage	of	this	by	offering	a	$200	
bottle	that	it	knows	nobody	will	buy,	but	which	serves	to	
skew	upward	the	customer’s	estimate	of	the	value	of	all	
wines	and	make	the	$55	bottle	seem	like	a	bargain.



Multi-attribute	utility	theory

In	real-life	the	outcomes	are	characterized	by	
two	or	more	attributes	such	as	cost	and	safety	
issues	–multi-attribute	utility	theory.
We	will	assume	that	higher	values	of	an	
attribute	correspond	to	higher	utilities.
The	question	is	how	to	get	preferences	for	more	
attributes
– without	combining	the	attribute	values	into	a	
single	utility	value	– dominance

– combining	the	attribute	values	into
a	single	utility	value

Dominance

If	an	option	is	of	lower	value	on	all
attributes	that	some	other	option,	it
need	not	be	considered	further
– strict	dominance.

Strict	dominance	can	be	defined	for
uncertain	outcomes	too.
– if	all	possible	outcomes	of	B
strictly	dominate	all	possible
outcomes	of	A

Strict	dominance	will	probably	occur	less	often	
than	in	the	deterministic	case.



Stochastic	dominance

Stochastic	dominance	occurs	more	frequently	in	real	problems.	It	
is	easier	to	understand	in	the	context	of	a	single	variable.
Stochastic	dominance	 is	best	seen	by	examining	the	cumulative	
distribution	 that	measures	the	probability	that	that	the	cost	is	
less	than	or	equal	any	given	amount	(it	integrates	the	original	
distribution).

probability distribution cumulative distribution

Preference	structure

To	specify	the	complete	utility	function	for	n	
attributes	each	having	d	values,	we	need	dn
values	in	the	worst	case.
– This	corresponds	to	a	situation	in	which	agent‘s	
preferences	have	no	regularity	at	all.

Preferences	of	typical	agents	have	much	more	
structure	so	the	the	utility	function	can	be	
expressed	as	:

U(x1,…,xn)	=	F[f1(x1),…,fn(xn)]



Preference	structure	(without	uncertainty)

The	basic	regularity	is	called	preference	independence.
Two	attributes	X1 and	X2 are	preferentially	independent	of	
a	third	attribute	X3 if	the	preference	between	outcomes
� x1,x2,x3	�and	� x’1,x’2,x3	�
does	not	depend	on	the	particular	value	x3.
If	each	pair	of	attributes	is	preferentially	independent	of	
any	other	attribute,	we	talk	about	mutual	preferential	
independence	(MPI).
If	attributes	are	mutually	preferentially	independent	then	
the	agent’s	preference	behavior	can	be	described	as	
maximizing	the	function:

U(x1,…,xn)	=	∑i Ui(xi)
A	value	function	of	this	type	is	called	an	additive	value	
function.

Preference	structure	(with	uncertainty)

When	uncertainty	is	present	we	need	to	consider	
the	structure	of	preferences	between	lotteries.
For	mutually	utility	independent	(MUI)	attributes		
we	can	use	multiplicative	utility	function:
U	=	k1U1 +	k2U2 +	k3U3
+	k1k2U1U2 +	k2k3U2U3 +	k1k3U1U3
+	k1k2k3U1U2U3

For	n	attributes	exhibiting	MUI	we	can	represent	
the	utility	function	using	n	constants	and	n	single-
attribute	utilities.



The	value	of	information

So	far	we	have	assumed	that	all	relevant	information	
is	provided	to	the	agent	before	it	makes	its	decision.
In	practice,	this	is	hardly	ever	the	case.	For	example,	
a	doctor	cannot	expect	to	be	provided	with	the	
result	of	all	possible	diagnostic	tests.
One	of	the	most	important	parts	of	decision	
making	is	knowing	what	questions	to	ask.

We	will	now	look	at	information	value	theory,	which	
enables	an	agent	to	choose	which	information	to	
acquire.

The	value	of	information	(example)

Suppose	an	oil	company	is	hoping	to	buy	one	of	the	n	indistinguishable	
blocks	of	ocean-drilling	rights.
Let	us	assume	further	 that	exactly	one	of	the	blocks	contain	oil	worth	C	
dollars,	while	others	are	worthless.	The	asking	price	of	each	block	is	C/n.

Expected	monetary	value	of	buying	one	block	is	C/n – C/n =	0.
Now	suppose	 that	a	seismologist	offers	 the	company	the	result	of	a	survey	
of	one	specific	block,	which	indicates	definitely	whether	the	block	contains	
oil.

How	much	should	the	company	to	pay	for	that	information?
– With	probability	1/n,	the	survey	will	indicate	oil	in	a	given	block	and	the	the	

company	will	buy	it	and	make	a	profit	C	– C/n.
– With	probability	(n-1)/n,	the	survey	will	show	that	the	block	contains	no	oil,	

in	which	case	the	company	will	buy	another	block.	Now	the	probability	of	
finding	oil	in	that	other	block	is	1/(n-1),	so	the	expected	profit	is	C/(n-1)	–
C/n.

– Together	the	expected	profit	given	the	survey	information	is:
1/n	(C	– C/n)	+	(n-1)/n	(C/(n-1)	– C/n)	=	C/n

Therefore	the	company	should	be	willing	to	pay	the	seismologist
up	to	C/n dollars	for	the	information:	the	information	is
worth	as	much	as	the	block	itself.



The	value	of	information	(a	general	formula)

We	assume	that	exact	evidence	can	be	obtained	about	the	
value	of	some	random	variable	Ej – this	is	called	value	of	
perfect	information (VPI).
The	value	of	the	current	best	action	& (with	the	initial	
evidence	e)	is	defined	by:

EU(&	|e)	=	maxa ∑s‘ P(Result(a)=s‘|a,e)	U(s‘)

The	value	of	the	best	action	&jk after	the	new	evidence	Ej =	
ejk is	obtained	is	defined	by	:

EU(&jk|e,	Ej=ejk)	=	maxa∑s‘ P(Result(a)=s‘|a,e, Ej=ejk)	U(s‘)

But	the	value	of	Ej is	currently	unknown	so	we	must	average	
over	all	possible	values	that	we	might	discover	for	Ej:

VPIe(Ej)	=	(∑k P(Ej = ejk|e)	EU(&jk|e,	Ej=ejk))	- EU(&|e)	

The	value	of	information	(qualitatively)

When	is	it	beneficial	to	obtain	new	information	?

Information	has	value	to	the	extend	that
– it	is	likely	to	cause	a	change	of	a	plan	and
– the	new	plan	will	be	significantly	better	that	the	old	plan.

Clear choice, the 
information is not 
needed

The choice is unclear 
and the information is 
crucial

The choice is unclear, 
the information is less 
valuable



Properties	of	the	value	of	information

Is	it	possible	for	information	to	be	deleterious?
The	expected	value	of	information	is	
nonnegative.
∀e,	Ej VPIe(Ej)	≥ 0

The	value	of	information	is	not	additive.
VPIe(Ej,Ek)	≠ VPIe(Ej)	+	VPIe(Ek)

The	expected	value	of	information	is	order	
independent.

VPIe(Ej,Ek)	=	VPIe(Ej)	+	VPIe,ej(Ek)	=	VPIe(Ek)	+	VPIe,ek(Ej)	

Information	gathering

A	sensible	agent	should	
– ask	questions	in	a	reasonable	order
– avoid	asking	questions	that	are	irrelevant
– take	into	account	the	importance	of	each	piece	of	information	in	relation	

its	cost
– stop	asking	questions	when	that	is	appropriate

We	assume	that	with	each	observable	evidence	 variable	Ej,	there	is	an	
associated	cost,	Cost(Ej).
Information-gathering	agent	can	select	(greedily)	the	most	efficient	
observation	until	no	observation	worth	its	costs	(myopic	approach)
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