Artificial Intelligence

Roman Barták

Department of Theoretical Computer Science and Mathematical Logic

Today program

Agent in partially observable environment maintains a belief state from the percepts observed and a sensor model and using a transition model the agent can predict how the world might evolve in the next time step.

- a belief state represents which states of the world are currently possible (by explicit enumeration of states or by logical formulas)
- the probability theory allows to quantify the degree of belief in elements of the believe state
- we can also describe probability of state transitions

Probabilistic reasoning over time

- representation of state transitions
- basic inference tasks
- inference algorithms for temporal models
- specific kinds of models (hidden Markov models, dynamic Bayesian networks)

In situation calculus, we view the world as a series of snapshots (time slices). A similar approach can be applied in probabilistic reasoning.

Each time slice (state) is described as a set of random variables:

- hidden (not observable) random variables X_{t}
- observable random variables E_{t} (with observed values e_{t})
t is an identification of the time slice (we assume discrete time with uniform time steps)

Notation:

- $X_{a: b}$ denotes a set of variables from X_{a} to X_{b}

A model example (umbrella world)

You are the security guard stationed at a secret underground installation and you want to know whether it is raining today:

- hidden random variable \mathbf{R}_{t}

But your only access to the outside world occurs each morning when you see the the director coming in with, or without, an umbrella.

- observable random variable \mathbf{U}_{t}

The transition model specifies the probability distribution over the latest state variables given the previous values.
This is given by $\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{0: t-1}\right)$.
Problem \#1: the set $X_{0: t-1}$ is unbounded in size as t increases

- we can make a Markov assumption - the current state depends only on a finite fixed number of previous states; processes satisfying this assumption are called Markov processes or Markov chains
- first-order Markov chain - the current state depends only on the previous state $\mathbf{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{X}_{0 \mathrm{t}-1}\right)=\mathbf{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{X}_{\mathrm{t}-1}\right)$

First-order

Second-order

Problem \#2: there are infinitely many possible values of t

- We assume that changes in the world state are caused by a stationary process (a process of change is governed by laws that do not themselves change very time)
- the conditional probability tables $\mathrm{P}\left(\mathrm{X}_{\mathrm{t}} \mid \mathrm{X}_{\mathrm{t}-1}\right)$ are identical for all t

A sensor (observation) model describes how the evidence (observed) variables E_{t} depend on other variables.

They could depend on previous variables as wells as the current state variables.

We make a sensor Markov assumption - the evidence variables depend only on the hidden state variables \mathbf{X}_{t} from the same time.

$$
P\left(E_{t} \mid X_{0: t}, E_{1: t-1}\right)=P\left(E_{t} \mid X_{t}\right)
$$

The first-order Markov assumption says that the state variables contain all the information needed to characterize the probability distribution for the next time slice.

What if this assumption is only approximate?

- increase the order of the Markov process model
- increase the set of state variables
- For example we could add Season ${ }_{t}$ to incorporate historical records or we could add Temperature ${ }_{t}$, Humidity ${ }_{t}$, Pressure $_{t}$ to use a physical model of rainy conditions.
- The first solution (increasing the order) can always be reformulated as an increase in set of state variables.

A Bayesian network view

The transition and sensor models can be described using a Bayesian network.
In addition to $\mathbf{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{X}_{\mathrm{t}-1}\right)$ and $\mathbf{P}\left(\mathbf{E}_{\mathrm{t}} \mid \mathbf{X}_{\mathrm{t}}\right)$ we need to say how everything gets started $\mathbf{P}\left(\mathbf{X}_{0}\right)$.

We have a specification of the complete joint distribution:

$$
\mathbf{P}\left(\mathbf{X}_{0: t} \mathbf{E}_{1: t}\right)=\mathbf{P}\left(\mathbf{X}_{0}\right) \Pi_{i} \mathbf{P}\left(\mathbf{X}_{\mathrm{i}} \mid \mathbf{X}_{\mathrm{i}-1}\right) \mathbf{P}\left(\mathbf{E}_{\mathrm{i}} \mid \mathbf{X}_{\mathrm{i}}\right)
$$

- Filtering: the task of computing the posterior distribution over the most recent state, given all evidence to date $\mathbf{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{e}_{1: \mathrm{t}}\right)$
- Prediction: the task of computing the posterior distribution over the future state, given all evidence to date $\mathbf{P}\left(\mathbf{X}_{\mathrm{t}+\mathrm{k}} \mid \mathbf{e}_{1: \mathrm{t}}\right)$ for $\mathrm{k}>0$
- Smoothing: the task of computing posterior distribution over a past state, given all evidence up to the present $\mathbf{P}\left(\mathbf{X}_{\mathrm{k}} \mid \mathbf{e}_{1: \mathrm{t}}\right)$ for $\mathrm{k}: 0 \leq \mathrm{k}<\mathrm{t}$
- Most likely explanation: the task to find the sequence of states that is most likely generated a given sequence of observations $\operatorname{argmax}_{\mathbf{x}_{1: \mathrm{t}}} \mathrm{P}\left(\mathbf{x}_{1: \mathrm{t}} \mid \mathbf{e}_{1: \mathrm{t}}\right)$

The task of computing the posterior distribution over the most recent state, given all evidence to date $-\mathbf{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{e}_{1: t}\right)$.
A useful filtering algorithm needs to maintain a current state estimate and update it, rather than going back over (recursive estimation):

$$
\mathbf{P}\left(\mathbf{X}_{\mathrm{t}+1} \mid \mathbf{e}_{1: t+1}\right)=\mathrm{f}\left(\mathbf{e}_{\mathrm{t}+1}, \mathbf{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{e}_{1: \mathrm{t}}\right)\right)
$$

How to define the function f ?

$$
\begin{aligned}
& \mathbf{P}\left(\mathbf{X}_{\mathrm{t}+1} \mid \mathbf{e}_{1: t+1}\right)=\mathbf{P}\left(\mathbf{X}_{\mathrm{t}+1} \mid \mathbf{e}_{1: \mathrm{t}}, \mathbf{e}_{\mathrm{t}+1}\right) \\
& =\alpha \mathbf{P}\left(\mathbf{e}_{\mathrm{t}+1} \mid \mathbf{X}_{\mathrm{t}+1}, \mathbf{e}_{1: t}\right) \mathbf{P}\left(\mathbf{X}_{\mathrm{t}+1} \mid \mathbf{e}_{1: \mathrm{t}}\right) \\
& =\alpha \mathbf{P}\left(\mathbf{e}_{\mathrm{t}+1} \mid \mathbf{X}_{\mathrm{t}+1}\right) \mathbf{P}\left(\mathbf{X}_{\mathrm{t}+1} \mid \mathbf{e}_{1: t}\right) \\
& =\alpha \mathbf{P}\left(\mathbf{e}_{\mathrm{t}+1} \mid \mathbf{X}_{\mathrm{t}+1}\right) \Sigma_{\mathbf{x}_{\mathrm{t}}} \mathbf{P}\left(\mathbf{X}_{\mathrm{t}+1} \mid \mathbf{x}_{\mathrm{t}}, \mathbf{e}_{1: \mathrm{t}}\right) \mathrm{P}\left(\mathbf{x}_{\mathrm{t}} \mid \mathbf{e}_{1: t}\right) \\
& =\alpha \mathbf{P}\left(\mathbf{e}_{\mathrm{t}+1} \mid \mathbf{X}_{\mathrm{t}+1}\right) \Sigma_{\mathrm{xt}} \mathbf{P}\left(\mathbf{X}_{\mathrm{t}+1} \mid \mathbf{x}_{\mathrm{t}}\right) \mathrm{P}\left(\mathbf{x}_{\mathrm{t}} \mid \mathbf{e}_{1: t}\right) \\
& \text { Bayes rule } \\
& \text { sensor Markov assumption }
\end{aligned}
$$

A message $f_{1: t}$ is propagated forward over the sequence:

$$
\begin{aligned}
& \mathbf{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{e}_{1: \mathrm{t}}\right)=\mathbf{f}_{1: \mathrm{t}} \\
& \mathbf{f}_{1: t+1}=\alpha \operatorname{FORWARD}\left(\mathbf{f}_{1: t}, \mathbf{e}_{\mathrm{t}+1}\right) \\
& \mathbf{f}_{1: 0}=\mathbf{P}\left(\mathbf{X}_{0}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{P}\left(\mathbf{R}_{t+1} \mid \mathbf{u}_{1 . t+1}\right) \\
& \quad=\alpha \mathbf{P}\left(\mathbf{u}_{t+1} \mid \mathbf{R}_{t+1}\right) \mathbf{P}\left(\mathbf{R}_{t+1} \mid \mathbf{u}_{1 . t}\right)=\alpha \mathbf{P}\left(\mathbf{u}_{t+1} \mid \mathbf{R}_{t+1}\right) \sum_{r_{t}} \mathbf{P}\left(\mathbf{R}_{t+1} \mid \mathbf{r}_{t}\right) \mathbf{P}\left(\mathbf{r}_{t} \mid \mathbf{u}_{1 . t}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{P}\left(\mathbf{R}_{0}\right)=\langle 0.5,0.5\rangle \\
& \mathbf{P}\left(\mathbf{R}_{1}\right) \\
&=\Sigma_{\mathbf{r}_{0}} \mathbf{P}\left(\mathbf{R}_{1} \mid \mathbf{r}_{0}\right) \mathbf{P}\left(\mathbf{r}_{0}\right) \\
&=\langle 0.5,0.5\rangle \\
& \mathbf{P}\left(\mathbf{R}_{1} \mid \mathbf{u}_{1}\right) \\
&=\alpha \mathbf{P}\left(\mathbf{u}_{1} \mid \mathbf{R}_{1}\right) \mathbf{P}\left(\mathbf{R}_{1}\right) \\
&=\alpha\langle 0.9,0.2\rangle\langle 0.5,0.5\rangle \\
& \approx \approx\langle 0.818,0.182\rangle \\
& \mathbf{P}\left(\mathbf{R}_{2} \mid \mathbf{u}_{1}\right) \\
&= \Sigma_{\mathbf{r}_{1}} \mathbf{P}\left(\mathbf{R}_{2} \mid \mathbf{r}_{1}\right) \mathbf{P}\left(\mathbf{r}_{1} \mid \mathbf{u}_{1}\right) \\
&=\langle 0.7,0.3\rangle \times 0.818 \\
& \quad+\langle 0.3,0.7\rangle \times 0.182 \\
& \approx\langle 0.627,0.372\rangle \\
& \mathbf{P}\left(\mathbf{R}_{2} \mid\right.\left.\mathbf{u}_{1}, \mathbf{u}_{2}\right) \\
&= \alpha \mathbf{P}\left(\mathbf{u}_{2} \mid \mathbf{R}_{2}\right) \mathbf{P}\left(\mathbf{R}_{2} \mid \mathbf{u}_{1}\right) \\
&=\alpha\langle 0.9,0.2\rangle\langle 0.627,0.372\rangle \\
&=\langle 0.883,0.117\rangle
\end{aligned}
$$

Prediction

The task of computing the posterior distribution over the future state, given all evidence to date $\mathbf{P}\left(\mathbf{X}_{t+k} \mid \mathbf{e}_{1: t}\right)$ for some $k>0$.
We can see this task as filtering without the addition of new evidence:
$\mathbf{P}\left(\mathbf{X}_{t+k+1} \mid \mathbf{e}_{1: t}\right)=\sum_{\mathbf{x}_{t+k}} \mathbf{P}\left(\mathbf{X}_{t+k+1} \mid \mathbf{x}_{t+k}\right) P\left(\mathbf{x}_{t+k} \mid \mathbf{e}_{1: t}\right)$
After some time (mixing time) the predicted distribution converges to the stationary distribution of the Markov process and remains constant.

The task of computing posterior distribution over a past state, given all evidence up to the present $-\mathbf{P}\left(\mathbf{X}_{\mathrm{k}} \mid \mathbf{e}_{1: t}\right)$ for $\mathrm{k}: 0 \leq \mathrm{k}<\mathrm{t}$.
We again exploit a recursive message-passing approach, now in two parts.

Using the backward message-passing notation:

$$
\begin{aligned}
& \mathbf{P}\left(\mathbf{e}_{\mathrm{k}+1: \mathrm{t}} \mid \mathbf{X}_{\mathrm{k}}\right)=\mathbf{b}_{\mathrm{k}+1: \mathrm{t}} \\
& \mathbf{b}_{\mathrm{k}+1: \mathrm{t}}=\text { BACKWARD }\left(\mathbf{b}_{\mathrm{k}+2: \mathrm{t}} \mathbf{e}_{\mathrm{k}+1}\right) \\
& \mathbf{b}_{\mathrm{t}+1: \mathrm{t}}=\mathbf{P}\left(\mathbf{e}_{\mathrm{t}+1: \mathrm{t}} \mid \mathbf{X}_{\mathrm{t}}\right)=\mathbf{P}\left(\mid \mathbf{X}_{\mathrm{t}}\right)=\mathbf{1}
\end{aligned}
$$

$\mathbf{P}\left(R_{k} \mid u_{1: t+1}\right)=\alpha \mathbf{P}\left(R_{k} \mid u_{1: k}\right) \mathbf{P}\left(u_{k+1: t} \mid R_{k}\right)$
$P\left(u_{k+1: t} \mid R_{k}\right)=\Sigma_{r_{k+1}} P\left(u_{k+1} \mid r_{k+1}\right) P\left(u_{k+2: t} \mid r_{k+1}\right) P\left(r_{k+1} \mid R_{k}\right)$

$$
\mathbf{P}\left(\mid R_{2}\right)=\mathbf{1}
$$

$$
\mathbf{P}\left(u_{2} \mid R_{1}\right)=\sum_{r_{2}} P\left(u_{2} \mid r_{2}\right) P\left(\mid r_{2}\right) \mathbf{P}\left(r_{2} \mid R_{1}\right)
$$

$$
=0.9 \times 1 \times\langle 0.7,0.3\rangle+0.2 \times 1 \times\langle 0.3,0.7\rangle=\langle 0.69,0.41\rangle
$$

$$
\begin{aligned}
& \mathbf{P}\left(\mathbf{X}_{k} \mid \mathbf{e}_{1: t}\right)=\mathbf{P}\left(\mathbf{X}_{\mathbf{k}} \mid \mathbf{e}_{1: k}, \mathbf{e}_{\mathrm{k}+1: t}\right) \\
& =\alpha \mathbf{P}\left(\mathbf{X}_{k} \mid \mathbf{e}_{1: k}\right) \mathbf{P}\left(\mathbf{e}_{k+1: t} \mid \mathbf{X}_{\mathrm{k}}, \mathbf{e}_{1: k}\right) \\
& =\alpha \mathbf{P}\left(\mathbf{X}_{\mathrm{k}} \mid \mathbf{e}_{1: \mathrm{k}}\right) \mathbf{P}\left(\mathbf{e}_{\mathrm{k}+1: \mathrm{t}} \mid \mathbf{X}_{\mathrm{k}}\right) \\
& =\alpha \mathbf{f}_{1: \mathrm{k}} \times \mathbf{b}_{\mathrm{k}+1: \mathrm{t}} \\
& \mathbf{P}\left(\mathbf{e}_{k+1: t} \mid \mathbf{X}_{k}\right)=\Sigma_{\mathbf{x}_{k+1}} \mathbf{P}\left(\mathbf{e}_{k+1: t} \mid \mathbf{X}_{k}, \mathbf{x}_{k+1}\right) \mathbf{P}\left(\mathbf{x}_{\mathbf{k}+1} \mid \mathbf{X}_{k}\right) \\
& =\Sigma_{\mathbf{x}_{\mathrm{k}+1}} \mathrm{P}\left(\mathbf{e}_{\mathrm{k}+1: \mathrm{t}} \mid \mathbf{x}_{\mathrm{k}+1}\right) \mathrm{P}\left(\mathbf{x}_{\mathrm{k}+1} \mid \mathbf{X}_{\mathrm{k}}\right) \quad \text { conditional independence } \\
& =\sum_{\mathrm{x}_{\mathrm{k}+1}} \mathrm{P}\left(\mathrm{e}_{\mathrm{k}+1}, \mathrm{e}_{\mathrm{k}+2: \mathrm{t}} \mid \mathbf{x}_{\mathrm{k}+1}\right) \mathrm{P}\left(\mathbf{x}_{\mathrm{k}+1} \mid \mathbf{x}_{\mathrm{k}}\right) \\
& =\Sigma_{x_{k+1}} P\left(e_{k+1} \mid \mathbf{x}_{k+1}\right) P\left(\mathbf{e}_{k+2: t} \mid \mathbf{x}_{k+1}\right) P\left(\mathbf{x}_{k+1} \mid X_{k}\right) \\
& \text { conditional independence } \\
& \text { conditioning }
\end{aligned}
$$

The task to find the sequence of states that is most likely generated a given sequence of observations $\operatorname{argmax}_{\mathrm{x}_{1: \mathrm{t}}} \mathrm{P}\left(\mathrm{x}_{1: \mathrm{t}} \mid \mathbf{e}_{1: \mathrm{t}}\right)$.
This is different from smoothing for each past state and taking the sequence of most probable states!

We can see each sequence as a path through a graph whose nodes are possible states at each time step:

Because of the Markov property the most likely path to a given state consists of the most likely path to some previous state followed by a transition to that state.
This can be described using a recursive formula.

Viterbi algorithm

The most likely path to a given state consists of the most likely path to some previous state followed by a transition to that state.

$$
\begin{aligned}
& \max _{\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{t}}} \mathbf{P}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{t}}, \mathbf{x}_{\mathrm{t}+1} \mid \mathbf{e}_{1: \mathrm{t}+1}\right) \\
& \quad=\alpha \mathbf{P}\left(\mathbf{e}_{\mathrm{t}+1} \mid \mathbf{x}_{\mathrm{t}+1}\right) \max _{\mathbf{x}_{\mathrm{t}}}\left(\mathbf{P}\left(\mathbf{X}_{\mathrm{t}+1} \mid \mathbf{x}_{\mathrm{t}}\right) \max _{\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{t}-1}} \mathrm{P}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{t}} \mid \mathbf{e}_{1: t}\right)\right)
\end{aligned}
$$

Again, we use an approach of forward message passing:

$$
\begin{aligned}
& \mathrm{m}_{1: \mathrm{t}}=\max _{\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{t}-1}} \mathbf{P}\left(\mathbf{x}_{\left.1, \ldots, \mathbf{x}_{\mathrm{t}-1}, \mathbf{X}_{\mathrm{t}} \mid \mathbf{e}_{1: \mathrm{t}}\right)}\right. \\
& \mathrm{m}_{1: t+1}=\mathbf{P}\left(\mathbf{e}_{\mathrm{t}+1} \mid \mathbf{X}_{\mathrm{t}+1}\right) \max _{\mathbf{x}_{\mathrm{t}}}\left(\mathbf{P}\left(\mathbf{X}_{\mathrm{t}+1} \mid \mathbf{x}_{\mathrm{t}}\right) \mathrm{m}_{1: \mathrm{t}}\right)
\end{aligned}
$$

Assume that the state of process is described by a single discrete random variable X_{t} (there is also a single evidence variable E_{t}).
This is called a hidden Markov model (HMM).
This restricted model allows for a simple and elegant matrix implementation of all the basic algorithms.
Assume that variable X_{t} takes values from the set $\{1, \ldots S\}$, where S is the number of possible states.
The transition model $P\left(X_{t} \mid X_{t-1}\right)$ becomes an $S \times S$ matrix T, where:

$$
T_{(i, j)}=P\left(X_{t}=j \mid X_{t-1}=i\right)
$$

We also put the sensor model in matrix form. Now we know the value of the evidence variable e_{t} so we describe $P\left(E_{t}=e_{t} \mid X_{t}=i\right)$, using a diagonal matrix \mathbf{O}_{t}, where:

$$
\mathbf{O}_{t(i, i)}=P\left(E_{t}=e_{t} \mid X_{t}=i\right)
$$

Matrix formulation of algorithms

The forward message propagation (from filtering)
$\mathbf{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{e}_{1: \mathrm{t}}\right)=\mathbf{f}_{1: \mathrm{t}}$
$\mathbf{f}_{1: t+1}=\alpha \mathbf{P}\left(\mathbf{e}_{\mathrm{t}+1} \mid \mathbf{X}_{\mathrm{t}+1}\right) \Sigma_{\mathbf{x}_{\mathrm{t}}} \mathbf{P}\left(\mathbf{X}_{\mathrm{t}+1} \mid \mathbf{x}_{\mathrm{t}}\right) \mathrm{P}\left(\mathbf{x}_{\mathrm{t}} \mid \mathbf{e}_{1: \mathrm{t}}\right)$
can be reformulated using matrix operations (message $f_{1: t}$ is modelled as a one-column matrix) as follows:

$$
\begin{aligned}
& \mathbf{T}_{(i, j)}=P\left(X_{t}=j \mid X_{t-1}=i\right) \\
& \left.\mathbf{O}_{t(i, i)}\right)=P\left(E_{t}=e_{t} \mid X_{t}=i\right) \\
& f_{1: t+1}=\alpha \mathbf{O}_{t+1} T^{\top} f_{1: t}
\end{aligned}
$$

The backward message propagation (from smoothing)

$$
\begin{aligned}
& \mathbf{P}\left(\mathbf{e}_{\mathrm{k}+1: \mathrm{t}} \mid \mathbf{X}_{\mathrm{k}}\right)=\mathbf{b}_{\mathrm{k}+1: \mathrm{t}} \\
& \mathbf{b}_{\mathrm{k}+1: \mathrm{t}}=\sum_{\mathbf{x}_{\mathrm{k}+1}} \mathrm{P}\left(\mathrm{e}_{\mathrm{k}+1} \mid \mathbf{x}_{\mathrm{k}+1}\right) \mathrm{P}\left(\mathbf{e}_{\mathrm{k}+2: \mathrm{t}} \mid \mathbf{x}_{\mathrm{k}+1}\right) \mathbf{P}\left(\mathbf{x}_{\mathrm{k}+1} \mid \mathbf{X}_{\mathrm{k}}\right)
\end{aligned}
$$

can be reformulated using matrix operations (message $\mathbf{b}_{\text {k:t }}$ is modelled as a one-column matrix) as follows:

$$
\mathbf{b}_{k+1: \mathrm{t}}=\mathbf{T} \mathbf{O}_{\mathrm{k}+1} \mathbf{b}_{\mathrm{k}+2: \mathrm{t}}
$$

What if we need to smooth the whole sequence of states?

$\mathbf{P}\left(\mathbf{X}_{\mathrm{k}} \mid \mathbf{e}_{1: \mathrm{t}}\right)=\alpha \mathbf{f}_{1: \mathrm{k}} \times \mathbf{b}_{\mathrm{k}+1: \mathrm{t}}$
The time complexity of smoothing with respect to evidence $\mathbf{e}_{1: \mathrm{t}}$ is $\mathrm{O}(\mathrm{t})$
One obvious method to smooth the whole sequence is to run the smoothing algorithm for each time step - this results in time complexity $\mathrm{O}\left(\mathrm{t}^{2}\right)$.
A better approach uses dynamic programming (reuse already computed information) reducing the time complexity to $\mathrm{O}(\mathrm{t})$.

- forward-backward algorithm
- the practical drawback of this approach is that its space complexity can be too high - it is $\mathrm{O}(|\mathrm{f}| \mathrm{t})$.

Forward-backward algorithm

```
function FORWARD-BACKWARD(ev, prior) returns a vector of probability distributions
    inputs: ev, a vector of evidence values for steps 1,\ldots,t
        prior, the prior distribution on the initial state, P(
    local variables: fv, a vector of forward messages for steps 0,\ldots,\mathbf{t}
                            b, a representation of the backward message, initially all 1s
                            sv, a vector of smoothed estimates for steps 1,\ldots,t
    fv [0]}\leftarrow\mathrm{ prior
    for }i=1\mathrm{ to }\boldsymbol{t}\mathrm{ do
        fv [i]\leftarrowFORWARD(fv [i-1], ev[i])
    for }i=t\mathrm{ downto 1 do
        sv[i]}\leftarrow\operatorname{NORMALIZE(fv [i] \timesb)
        b}\leftarrow\operatorname{BACKWARD}(\mathbf{b},\mathbf{ev}[i]
    return sv
```

Can be smoothing the whole sequence of states done with smaller memory consumption while keeping the time complexity O(t)?

Ideas:

- For message-passing in one direction we need constant space independent of t.
- Can the message $f_{1: t}$ be obtained from the message $f_{1: t+1}$?
- Then we can pass the forward message in the reverse (backward) direction together with the backward message.
Let us exploit matrix operations:

$$
\mathbf{f}_{1: t+1}=\alpha \mathbf{O}_{\mathrm{t}+1} \mathbf{T}^{\top} \mathbf{f}_{1: \mathrm{t}} \quad \rightarrow \quad \mathbf{f}_{1: \mathrm{t}}=\alpha^{\prime}\left(\mathbf{T}^{\top}\right)^{-1}\left(\mathbf{O}_{\mathrm{t}+1}\right)^{-1} \mathbf{f}_{1: \mathrm{t}+1}
$$

Algorithm:

- first, run the forward-message propagation to get $\mathbf{f}_{1: t}$
- then during the backward stage compute both $\mathbf{f}_{1: \mathrm{k}}$ and $\mathbf{b}_{\mathrm{k}+1: \mathrm{t}}$

Assume smoothing in an on-line setting where smoothed estimates must be computed for a fixed number dof back time steps $-\mathbf{P}\left(\mathbf{X}_{\mathrm{t}-\mathrm{d}} \mid \mathrm{e}_{1: \mathrm{t}}\right)$. This is called fixed-lag smoothing.
In the ideal case, we want incremental computation in a constant time per update.
we have $P\left(X_{t-d} \mid \mathbf{e}_{1: t}\right)=\alpha \mathbf{f}_{1:-\mathrm{d}} \times \mathbf{b}_{\mathrm{t}-\mathrm{d}+1: \mathrm{t}}$
we need $\mathbf{P}\left(\mathbf{X}_{\mathrm{t}-\mathrm{d}+1} \mid \mathbf{e}_{1: t+1}\right)=\alpha \mathbf{f}_{1: t-d+1} \times \mathbf{b}_{\mathrm{t}-\mathrm{d}+2: t+1}$
An incremental approach:

- we can use $f_{1: t-d+1}=\alpha 0_{t-d+2} \mathbf{T}^{\top} f_{1: t-d}$
- we need incremental computation of $\mathbf{b}_{t-d+2: t+1}$ from $\mathbf{b}_{t-d+1: t}$
$\mathbf{b}_{t-d+1: t}=\mathbf{T} \mathbf{O}_{t-d+1} \mathbf{b}_{\mathrm{t}-\mathrm{d}+2: \mathrm{t}}=\left(\Pi_{\mathrm{i}=-\mathrm{d}+1, \ldots, \mathrm{t}} \mathbf{T} \mathbf{O}_{\mathrm{i}}\right) \mathbf{b}_{\mathrm{t}+1: \mathrm{t}}=\mathbf{B}_{\mathrm{t}-\mathrm{d}+1: \mathrm{t}} \mathbf{1}$
$b_{t-d+2: t+1}=\left(\Pi_{i-t-d+2, \ldots, t+1} \mathbf{T} \mathbf{O}_{i}\right) b_{t+2: t+1}=B_{t-d+2: t+1} \mathbf{1}$
$\mathbf{B}_{\mathrm{t}-\mathrm{d}+2: \mathrm{t}+1}=\left(\mathbf{O}_{\mathrm{t}-\mathrm{d}+1}\right)^{-1} \mathbf{T}^{-1} \mathbf{B}_{\mathrm{t}-\mathrm{d}+1: \mathrm{t}} \mathbf{T} \mathbf{O}_{\mathrm{t}+1}$
function FIXED-LAG-SMOOTHING $\left(e_{t}, \mathrm{hmm}, \mathbf{d}\right)$ returns a distribution over \mathbf{X}_{t-d}
inputs: e_{t}, the current evidence for time step t hmm, a hidden Markov model with $S \times S$ transition matrix T d , the length of the lag for smoothing
static: t, the current time, initially 1
\mathbf{f}, a probability distribution, the forward message $\mathbf{P}\left(X_{t} \mid e_{1: t}\right)$, initially PRIOR $[\mathrm{hmm}]$
B, the d-step backward transformation matrix, initially the identity matrix $e_{t-d: t}$, double-ended list of evidence from $t-\mathrm{d}$ to t, initially empty
local variables: $\mathbf{O}_{t-d}, \mathbf{O}_{t}$, diagonal matrices containing the sensor model information
add e_{t} to the end of $e_{t-d: t}$
$\mathbf{O}_{t} \leftarrow$ diagonal matrix containing $\mathbf{P}\left(e_{t} \mid X_{t}\right)$
if $t>\mathbf{d}$ then
$\mathbf{f} \leftarrow \operatorname{FORWARD}\left(\mathbf{f}, e_{t}\right)$
remove e_{t-d-1} from the beginning of $e_{t-d: t}$
$\mathbf{O}_{t-d} \leftarrow$ diagonal matrix containing $\mathbf{P}\left(e_{t-d} \mid X_{t-d}\right)$
$\mathrm{B} \leftarrow \boldsymbol{O}_{t-d}^{-1} \mathbf{T}^{-1} \mathbf{B T} \boldsymbol{O}_{t}$
else $\mathrm{B} \leftarrow \mathbf{B T O}_{t}$
$t \leftarrow t+1$
if $t>\mathbf{d}$ then return $\operatorname{NORMALIZE}(\mathbf{f} \times \mathbf{B 1})$ else return null

© 2016 Roman Barták
Department of Theoretical Computer Science and Mathematical Logic
bartak@ktiml.mff.cuni.cz

