
Artificial	Intelligence

Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

Today	program

Bayesian	networks
– an	efficient	way	to	represent	any	full	joint	probability	
distribution	by	exploiting	conditional	independence

Semantics	of	networks
– representing	the	full	joint	probability	distribution

Constructing	the	networks
Inference	in	Bayesian	networks
– exact	inference

• enumeration,	variable	elimination
– approximate	inference

• sampling	methods	(direct,	likelihood	weighting,	MCMC)

Bayesian	network

specifies	conditional	independence	relationships	
among	random	variables

a	directed	acyclic	graph	(DAG)
– nodes	correspond	to	random	variables
– predecessors	of	nodes	are	called	parents
– each	node	X	has	a	conditional	probability	distribution	
P(X	|	Parents(X))

alternative	names
– belief	network,	probabilistic	network,	causal	network,	
knowledge	map

An	example	(burglary	detection)

We	have	a	burglar	alarm	installed	at	home.
It	is	fairly	reliable	at	detecting	a	burglary,
but	occasionally	responds	to	minor	earthquakes.
Our	neighbors	Mary	and	John	promised	to	call	us
when	they	hear	the	alarm.

– John	nearly	always	calls	when	he	hears	alarm,	but	
sometimes	confuses	the	telephone	ringing	with	the	alarm

– Mary	likes	loud	music	and	often	misses	the	alarm	
altogether

We	would	like	to	estimate	the	probability	of	a	burglary	
given	the	evidence	of	who	has	or	has	not	called.
Other	assumptions:

– neighbors	do	not	perceive	burglary	directly	and	they	do	
not	notice	minor	earthquakes

– neighbors	do	not	confer	(they	are	independent)

Bayesian	network	for	burglary	detection

Random	Boolean	variables	represent	possible	events.
– some	events	(the	telephone	ringing,	passing	helicopter,	
alarm	failure,	…)	are	ignored

Conditional	probability	tables (CPTs)	describe	the	
conditional	probability	distributions

– recall	that	we	can	keep	probability	only	for	values	true

The	semantics	of	Bayesian	networks

The	Bayesian	network	represents	the	full	joint	
probability	distribution.

P(x1,…,xn)	=	Πi P(xi |	parents(Xi))
Tables	P(X	|	Parents(X))	correspond	to	conditional	
probability	defined	by	the	underlying	full	joint	
probability	distribution.

Because	the	full	joint	probability	distribution	 can	be	
used	answer	any	query	(in	its	domain)	we	can	
calculate	the	same	answer	using	the	Bayesian	
network	(via	marginalization).

Constructing	Bayesian	networks	(principles)

How	to	build	a	Bayesian	network?
We	already	have	a	clue:
P(x1,…,xn)	=	Πi P(xi |	parents(Xi))

Let	us	decompose	P(x1,…,xn)	using	the	chain	rule
P(x1,…,xn)	=	Πi P(xi |	xi-1,…,x1).

Then	we	will	get
P(Xi |	Parents(Xi))	=	P(Xi |	Xi-1,…,X1)

under	the	condition	Parents(Xi)	⊆ {Xi-1,…,X1},	
which	is	satisfied	by	numbering	the	nodes	in	a	
way	that	is	consistent	with	the	partial	order	
implicit	in	the	graph	structure.

Constructing	Bayesian	networks	(algorithm)

Nodes:
determine	the	set	of	random	variables	that	are	required	to	
model	the	domain	and	order	them

– any	order	will	work,	but	the	resulting	networks	will	be	different
– a	recommended	order	is	such	that	causes	precede	effects

Arcs:
choose	variables	Xi in	a	given	order	from	1	to	n

– in	the	set		{X1,…,Xi-1}	choose	a	minimal	set	of	parents	for	Xi,	such	
that	P(Xi |	Parents(Xi))	=	P(Xi |	Xi-1,…,X1)	holds

– for	each	parent	insert	a	link	from	the	parent	to	Xi
– write	down	the	conditional	probability	table
P(Xi |	Parents(Xi))

Some	properties:
– the	construction	method	guarantees	that	the	network	is	acyclic
– the	network	does	not	contain	no	redundant	probability	values	
an	so	it	is	always	consistent	(satisfies	the	axioms	of	probability)

Constructing	Bayesian	networks	(notes)

A	Bayesian	networks	can	often		be	far	more	compact	than	the	
full	joint	probability	distribution	(provided	that	the	network	is	
sparse).

– random	variables	are	often	influenced	by	a	few	other	variables
– assume	that	each	random	variable	is	directly	influenced	by	at	
most	k	other	variables	(and	we	have	n	such	variables);	then	the	
space	of	representation	is
• n.2k for	Bayesian	network
• 2n for	full	joint	distribution

– We	can	also	ignore	some	slight	dependencies,	which	makes	the	
network	smaller	in	exchange	for	less	accuracy
• for	example,	we	assumed	that	call	from	Mary	and	John	is	driven	by	
the	alarm	sound	only	but	not	for	example	by	earthquake

– naturally	we	will	get	a	compact	Bayesian	network	only	if	we	
choose	the	node	ordering	right

Constructing	Bayesian	networks	(an	example)

Let	us	use	the	following	order	of	random	variables:
MarryCalls,	JohnCalls,	Alarm,	Burglary,	Earthquake

– MarryCalls has	no	parents
– if	Marry	calls	then	the	alarm	is	probably
active	which	would	make	it	more	likely
that	John	calls

– alarm	is	probably	active	if	Marry
or	John	calls

– if	we	know	the	alarm	state	then	the
calls	from	Marry	and	John	do	not
influence	whether	the	burglary	happened
P(Burglary	|	Alarm,	JohnCalls,	MarryCalls)	=	P(Burglary	|	Alarm)

– the	alarm	is	an	earthquake	detector	of	sorts,	but	if	there	
was	a	burglary	then	it	explains	the	alarm	and	the	
probability	of	an	earthquake	is	only	slightly	above	normal

Other	orderings	of	nodes

Only	two	more	arcs	(in	comparison	
with	the	previous	network)	but	the	
problem	is	how	to	fill	in	the	CPTs.

– The	same	problem	as	using	either	
causal	or	diagnostic	direction.

– It	is	better	to	follow	the	causal	
direction	(causes	before	effects).
• leads	to	smaller	networks	and	easier	
-to-fill	CPTs

When	using	a	wrong	ordering	we	
may	get	big	networks,	where	
nothing	is	saved	in	comparison	to	
full	joint	probability	distribution.

– MaryCalls,	JohnCalls,	Earthquake,	
Burglary,	Alarm

Conditional	independence	in	Bayesian	networks

So	far	we	looked	at	Bayesian	networks	in	terms	of	
the	representation	of	the	full	joint	distribution.
– useful	to	derive	a	method	for	constructing	networks

Let	us	explore	topological	semantics	of	networks
a node is conditionally
independent of its non-
descendants given its
parents

a node is conditionally independent
of all other nodes given its parents,
children, and children‘s parents
(Markov blanket)

Inference	by	enumeration

We	introduced	 the	Bayesian	networks	to	do	
inference	– to	deduce	posterior	probability	 of	some	
variable(s)	X from	the	query	given	the	values	e of	
observed	variables	(evidence),	while	having	the	
other	variables	Y hidden.

P(X|e)	=	α P(X,e)	=	α Σy P(X,e,y)	

the	distribution	P(X,e,y)	can	be	computed	as	
follows

P(x1,…,xn)	=	Πi P(xi |	parents(Xi))

We	can	do	some	arithmetic	tricks	by	moving	some	
terms	P(xi |	parents(Xi))	outside	the	summation.

Inference	by	enumeration	(example)

Assume	a	query	about	the	probability	 of	burglary	when	
both	Marry	and	John	calls
P(b	|	j,m)

=	α Σe Σa P(b)	P(e)	P(a|b,e)	P(j|a)	P(m|a)
=	α P(b)	Σe P(e)	Σa P(a|b,e)	P(j|a)	P(m|a)

The	structure	of	computation	can	be	describes	using	a	
tree	structure.
– it	is	very	similar	to	solving
CSPs	and	SAT

Notice	that	some	parts
are	repeated!

Inference	by	enumeration

Variable	elimination

Enumeration	repeats	the	same	parts	of	the	computation.
We	can	remember	the	result	and	reuse	it	later.
P(B	|	j,m)

=	α P(B)	Σe P(e)	Σa P(a|B,e)P(j|a)P(m|a)
=	α f1(B)	Σe f2(E)	Σa f3(A,B,E) f4(A) f5(A)

Factors	fi are	matrices	(tables)	corresponding	to	CPTs.
Evaluation	will	be	done	from	right	to	left.

– the	product	of	factors	corresponds	to	the	pointwise product	
(it	is	not	a	multiplication	of	matrices)

– summing	out	a	variable	is	done	by	adding	up	the	sub-
matrices	formed	by	fixing	the	variable	to	each	of	its	values	in	
turn

Operations	on	factors

The	pointwiseproduct of	two	factors	yields	a	new	factor	whose	
variables	are	the	union	of	the	variables	from	the	original	factors.
f(X1,…,Xj,Y1,…,Yk,Z1,…Zl)	 =	f(X1,…,Xj,Y1,…,Yk)	 .	f(Y1,…,Yk,Z1,…Zl)	

Then	we	sum	out	a	variable	to	eliminate	it:		Σa f(A,B,C)	=	f(B,C)	

A B C f3(A,B,C)

T T T 0.06	=	0.3*0.2

T T F 0.24	= 0.3*0.8

T F T 0.42	= 0.7*0.6

T F F 0.28	= 0.7*0.4

F T T 0.18	= 0.9*0.2

F T F 0.72	= 0.9*0.8

F F T 0.06	= 0.1*0.6

F F F 0.04	= 0.1*0.4

+ =

A B C f3(A=T,B,C)

T T T 0.06

T T F 0.24

T F T 0.42

T F F 0.28

A B C f3(A=F,B,C)

F T T 0.18

F T F 0.72

F F T 0.06

F F F 0.04

B C f4(B,C)

T T 0.24

T F 0.96

F T 0.48

F F 0.31

A B f1(A,B)

T T 0.3

T F 0.7

F T 0.9

F F 0.1

B C f2(B,C)

T T 0.2

T F 0.8

F T 0.6

F F 0.4

* =

Variable	elimination	(algorithm)

• The	algorithm	works	for	any	ordering	of	variables.
• The	complexity	is	given	by	the	size	of	the	largest	factor	
constructed	during	the	operation	of	the	algorithm.

• Eliminate	whichever	variable	minimizes	the	size	of	the	
next	factor	to	be	constructed	(heuristic).

The	complexity	of	exact	inference

If	the	Bayesian	network	is	a	poly-tree (there	is	at	most	one	
undirected	path	between	any	two	nodes	in	the	network),	then	
the	time	and	space	complexity	is	linear	in	the	size	of	the	
network	that	is	defined	as	the	number	of	CPT	entries	O(n.dk).

For	multiply	connected	networks,	the	complexity	is	larger:
– 3SAT	can	be	reduced	to	inference	in	the	Bayesian	networks	so	
inference	in	Bayesian	networks	is	NP-hard

– the	problem	is	as	hard	as	that	of	computing	the	number	of	
satisfying	assignments	for	a	propositional	logic	formula,	that	s	
#P-hard

Approximate	inference

Exact	inference	is intractable	for	large,	multiply	connected	
networks	so	we	may	need	to	consider	approximate	
inference	methods	based	on	Monte	Carlo	algorithms.
Monte	Carlo	algorithms	are	used	to	estimate	quantities	
that	are	difficult	to	calculate	exactly.

– generate	many	samples
– use	statistics	to	estimate	the	quantity
– more	samples	=	more	accuracy

For	Bayesian	networks	we	describe	two	families	of	
algorithms

– direct	sampling
– Markov	chain	sampling

Direct	sampling

A	sample corresponds	to	an	instantiation	of	random	variables.
Each	sample	should	should	be	generated	from	a	known	
probability	distribution	(given	by	CPTs	in	the	Bayesian	network).

– nodes	(variables)	are	taken	in	topological	order
– the	probability	distribution	is	conditioned	on	the	values	already	
assigned	to	parents

– generate	a	sample	value	based	on	this	distribution
Let	N	be	the	number	of	samples	and	N(x1,…,xn)	be	the	number	
of	occurrences	of	event	x1,…,xn,	then

P(x1,…,xn)	=	limN→∞ (N(x1,…,xn)/N)

Direct	sampling	(an	example)

Generate	a	value	for	Cloudy	from	the	distribution
P(Cloudy)	=	〈0.5,	0.5〉
let	true	be	selected

Generate	a	value	for	Sprinkler	from	the	distribution
P(Sprinkler	|	Cloudy=true)	=	〈0.1,	0.9〉
let	it	be	false

Generate	a	value	for	Rain	from	the	distribution
P(Rain	|	Cloudy=true)	=	〈0.8,	0.2〉
let	it	be	true

Generate	a	value	for	WetGrass from	the	distribution	
P(WetGrass |	Sprinkler=false,	Rain=true)	=	〈0.9,	0.1〉
let	it	be	true

We	have	a	sample	Cloudy=true,	Sprinkler=false,	Rain=true,	WetGrass=true

The	probability	of	obtaining	that	sample	is	0.5	*	0.9	*	0.8	*	0.9	=	0.324

Rejection	sampling

However,	we	are	looking	for	P(X	|	e)!
From	all	the	generated	samples,	we	will	select	only	those
consistent	with	the	evidence	e	(other	samples	are	rejected).

P(X	|	e)	≈ N(X,e)	/	N(e)

Assume	that	we	generated	100	samples,	but	only	for	27	samples	we	have	
Sprinkler=	true	and	from	them	in	8	samples	we	have	Rain	=	true	while	in	19	
samples	we	have	Rain	=	false.	Then

P(Rain |	Sprinkler=true)	≈ Normalize(〈8,	19〉)	=	〈0.296,	0.704〉

The	major	weakness	is	rejecting	too	many	samples!	

Likelihood	weighting

Instead	of	rejecting	inconsistent	samples	it	
seems	more	efficient	to	generate	only	samples	
consistent	with	evidence	e.
– fix	the	values	for	the	evidence	variables	E	and	
sample	only	the	non-evidence	variables

– The	probability	of	obtaining	a	sample	is
P(z,e)	=	Πi P(zi |	parents(zi))

– But	this	is	not	what	we	want!	We	miss
w(z,e)	=	Πj P(ej |	parents(ej)).

– Hence	each	sample	is	weighted	as	follows:
P(X	|	e)	≈ α N(X,e)	w(X,e)

Likelihood	weighting	(an	example)

Let	the	query	be	P(Rain	|	Sprinkler=true,WetGrass=true))
• The	initial	weight	is	w	=	1.0
• Generate	a	value	for	Cloudy	from	the	distribution

P(Cloudy)	=	〈0.5,	0.5〉
let	it	be	true

• The	value	Sprinkler=true is	known,
but	we	modify	the	weight
w	←w	*	P(Sprinker=true	|	Cloudy=true)	=	0.1

• Generate	a	value	for	Rain	from	the	distribution	
P(Rain	|	Cloudy=true)	=	〈0.8,	0.2〉
let	it	be	true

• The	value	WetGrass=true is	known,	but	we	modify	the	weight
w	←w	*	P(WetGrass=true	|	Sprinker=true,Rain=true)	 =	0.099

We	obtained	a	sample
Cloudy=true,	Sprinkler=false,	Rain=true,	WetGrass=true,
with	the	weight	0.099

Likelihood	weighting	(algorithm)

Markov	Chain	Monte	Carlo	(MCMC)

Direct	sampling	generates	each	sample	from	scratch.
We	can	obtain	a	sample	differently:

– start	with	a	randomly	generated	sample	consistent	with	evidence	e
– for	a	selected	variable	X	(outside	evidence	E)	select	a	new	value	

conditioned	on	the	the	values	of	the	variables	in	the	Markov	blanket
P(x	|	mb(X))	=	P(x	|	parents(X))	ΠZ∈Children(X) P(z |	parents(Z))

– we	will	get	a	so	called	Markov	chain,	hence	the	name	of	the	method	
Markov	Chain	Monte	Carlo	(MCMC)

– samples	are	processed	as	in	direct	sampling

Markov	chain	(an	example)

Assume	evidence	Sprinkler=true,	WetGrass=true
We	will	get	four	different	states	that	will	be	visited	by	the	
Markov	chain.

We	explore	100	states:
for	31	states	we	have	Rain=true
for	69	states	we	have	Rain=false

Hence	we	get:
P(Rain	|	Sprinkler=true,	WetGrass=true)

=	Normalize(〈31,	69〉)	=	〈0.31,	0.69〉

Why	MCMC	works?

The	sampling	process	settles	into	a	dynamic	equilibrium	in	which	the	
long-term	fraction	of	time	spent	in	each	state	is	exactly	proportional	to	
its	posterior	probability.
• let	us	use	the	following	notation:

– q(x→x‘)	for	probability	of	transition	from	x	to	x‘	(this	transition	
probabity defines	the	Markov	chain)

– πt(x)	for	probability	of	being	at	state	x	at	time	t
• in	general	the	following	formula	holds:

– πt+1(x‘)	=	Σx πt(x)	q(x→x‘)	
• for	stationary	distribution	we	require

– π(x‘)	=	Σx π(x)	q(x→x‘)	
– this	holds	for	example	when	π(x)	q(x→x‘)	=	π(x‘)	q(x‘→x)

• Assume	that	we	changed	the	value	of	variable	Xi from	xi to	xi‘,	other	
variables	are	Yi and	their	values	are	yi
– q(x→x‘)	=	q((xi,yi)→(xi‘,yi))	=	P(xi‘|	yi,e)	=	P(xi‘|	mb(Xi))	
– This	is	called	Gibss sampling
– π(x)	q(x→x‘)	=	P(x|e)	P(xi‘|	yi,e)	=	P(xi,yi|e)	P(xi‘|	yi,e)

=	P(xi|yi,e)	P(yi|e)	P(xi‘|	yi,e)
=	P(xi|yi,e)	P(xi‘,yi|	e)	=	q(x‘→x) π(x‘)	 chain rule

© 2016 Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

bartak@ktiml.mff.cuni.cz

