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Introduction

We	construct	rational	agents.
An	agent is	an	entity	that	perceives	 its	environment
through	sensors and	acts	upon	that	environment	through	
actuators.
A	rational	agent	is	an	agent	maximizing	its	expected	
performance	measure.

In	AI	1	we	dealt	mainly	with	a	logical	approach	
to	agent	design	(no	uncertainty).
We	ignored

– interface	to	environment	(sensors,	actuators)
– uncertainty
– the	possibility	of	self-improvement	(learning)



Course	structure

Introduction
– motivation and background on probability

Probabilistic reasoning 
– uncertainty, probabilistic reasoning, Bayesian 

networks, Hidden Markov Models

Rational decisions
– utility theory, Markov Decision Processes, game 

theory, mechanism design

Machine learning
– decision trees, regression, SVM, reinforcement 

learning

Resources

Artificial Intelligence: A Modern Approach
– S. Russell and P. Norvig
– Prentice Hall, 2010 (3rd ed.)
– http://aima.cs.berkeley.edu/

Umělá inteligence 1-6
– Vladimír Mařík, Olga Štěpánková, 

Jiří Lažanský a kol.
– Academia



Course	web	site

http://ktiml.mff.cuni.cz/~bartak/ui2

You	can	find	there:
– slides
– links	and	resources
– contacts
– quiz
– …

Links	to	other	courses

Seminar	on	Artificial	Intelligence	II
– how	to	apply	AI	techniques	in	practice

Machine	learning
– how	can	computers	learn	new	things

Multi-agent	systems
– how	to	handle	multiple	agents

Probabilistic	graphical	models
– how	to	do	Bayesian	inference	efficiently	etc.

Human-like	artificial	agents
– how	to	design	agents	for	virtual	environments

Practical	course	on	robotics
– how	to	design	hardware	agents



Uncertainty	so	far

Can	we	handle	uncertain	information	 in	the	pure	
logical	approach?
belief	states
– represent	sets	of	all	possible	world
states for	the	agent

Drawbacks
– a logical	agent	must	consider	every	logically	possible	
explanation	for	the	observations,	no	matter	how	
unlikely	(large	and	complex	representations)

– a	correct	contingent	plan	must	consider	arbitrary	
likely	contingencies	(big	plans)

– sometimes	there	is	no	plan	that	is	guaranteed	to	
achieve	the	goal,	yet	the	agent	must	act

Example

Diagnosing	a	dental	patient‘s	toothache
Let	us	try	to	apply	propositional	logic:
Toothache	⇒ Cavity

Hmm,	is	it	really	true?
– not	all	patients	with	toothaches	have	cavities;	some	
of	them	have	gum	disease,	an	abscess,	or	other	
problems
Toothache	⇒ Cavity	∨ GumProblem ∨ Abscess	∨ …

We	could	try	turning	the	rule	into	a	causal	rule:
Cavity	⇒ Toothache

But	this	is	not	right	either	– not	all	cavities	cause	pain
The	only	way	to	fix	the	rule	is	to	make	it	logically	
exhaustive!



Using	a	logical	approach

Why	does	logic	fail	to	cope	with	a	domain	like	medical
diagnosis?

• laziness:	 it	is	too	much	work	to	list	the	complete	set	of	
antecedent	or	consequents	and	too	hard	to	use	such	rules

• theoretical	ignorance:	medical	science	has	no	complete	
theory	for	the	domain

• practical	ignorance:		even	if	we	know	all	the	rules	we	might	
be	uncertain	because	not	all	the	necessary	tests	have	been	or	
can	be	run

We	need	another	tool	to	deal	with	degrees	of	belief	–
probability	theory.

A	logical	agent	believes	each	sentence	to	be	true	or	false	or	has	
no	opinion.	A	probabilistic	agent	may	have	a	numerical	degree	
of	belief	between	0	(certainly	false)	and	1	(certainly	true).

Basic	probability	notation

Like	logical	assertions,	probabilistic	assertions	are	about	
possible	worlds	– sample	space	Ω.
– the	possible	worlds	are	mutually	exclusive and	
exhaustive

Each	possible	world	ω is	associated	with	a	numerical	
probability	P(ω)	such	that:

0	≤ P(ω)	≤ 1
Σω∈Ω P(ω)	=	1

Example:
If	we	are	about	to	roll	two	(distinguishable)	dice,	there	
are	36	possible	worlds	to	consider:	(1,1),	(1,2),…,	(6,6)
P(ω)	=1/36



Events

The	sets	of	possible	worlds	are	called	events.
Example:	„doubles	are	rolled“	is	an	event

The	probability	of	event	is	the	sum	of	probabilities	
of	possible	worlds	in	the	event.

P(φ) =	Σω∈φ P(ω)
Example:
P(doubles)	=	
1/36+1/36+1/36+1/36+1/36+1/36	=	1/6

These	probabilities	are	called	unconditional or	
prior probabilities („priors“	for	short).

Conditional	probability

Frequently,	we	have	some	information	(evidence)	and	we	
are	interested	in	probability	of	some	event.

For	example,	what	is	the	probability	of	double	if	we	already	
know	that	first	die	rolled	to	5?
P(doubles	|	Die1 =	5)	=	1/36	/	(6*1/36)	=	1/6

This	is	called	conditional	or posterior	probability
P(a	|	b)	=	P(a	∧ b)	/	P(b),	whenever	P(B)	> 0

This	can	be	also	written	in	a	different	form	called	the	product	
rule
P(a	∧ b)	=	P(a	|	b)	.	P(b)

Beware!	If	we	have	more	evidence	then	the	conditional	
probability	needs	to	assume	it.
P(doubles	 |	Die1 =	5,	Die2 =	5)	=	1	



Random	variables

In	a	factored	representation,	a	possible	world	is	
represented	by	a	set	of	variable/value	pairs.
Variables	in	probability	 theory	are	called	random	
variables.	Every	random	variable	has	a	domain	–
the	set	of	possible	values	it	can	take	on	(similarly	to	
a	CSP).

Die1 – represents	a	value	on	the	first	die	1	(1,…,6)
Cavity	– describes	whether	 the	patient	has	or	has	not	
cavity	(true,	false)

A	possible	world	is	fully	identified	by	values	of	all	
random	variables.

P(Die1 =	5,	Die2 =	5)

Probability	distribution

Probability of all possible worlds can be described using a 
table called a full joint probability distribution – the 
elements are indexed by values of random variables.

Given the table, we can calculate probabilities of values of 
any random variable:

P(toothache=true) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2
P(toothache=false) = 0.072+ 0.008 + 0.144 + 0.576 = 0.8

We will describe the table in a short way as:
P(Toothache) = 〈0.2, 0.8〉



Probability	axioms

P(¬a)	=	1	– P(a)

inclusion-exclusion	principle
P(a	∨ b)	=	P(a)	+	P(b)	– P(a	∧ b)

chain	rule
P(A,B,C,D)
=	P(A|B,C,D)	P(B,C,D)
=	P(A|B,C,D)	P(B|C,D)	P(C,D)
=	P(A|B,C,D)	P(B|C,D)	P(C|D)	P(D)

Inference	using	full	joint	distributions

How to answer questions?
Knowledge base is
represented using full joint distribution.
To compute posterior probability of a query 
proposition given observed evidence, we add 
up probabilities of possible worlds in which 
the proposition is true (marginalization or 
summing out).
P(φ) = Σω:ω|=φ P(ω)
P(Y) = Σz∈Z P(Y,z)



Example	of	probabilistic	inference

P(φ)	=	Σω:ω|=φ P(ω)
P(Y)	=	Σz∈Z P(Y,z)

P(toothache) (=	P(Toothache=true))
=	0.108	+	0.012	+	0.016	+	0.064 =	0.2

P(cavity ∨ toothache)
=	0.108+0.012+0.072+0.008+0.016+0.064	=	0.28

P(¬cavity|toothache)
=	P(¬cavity ∧ toothache) /	P(toothache)
=	(0.016	+	0.064)	/	(0.108	+	0.012	+	0.016	+	0.064)
=	0.4

Normalization

P(¬cavity|toothache)
=	P(¬cavity	∧ toothache)	/	P(toothache)
=	(0.016	+	0.064)	/	(0.108	+	0.012	+	0.016	+	0.064)	=	0.4

P(cavity|toothache)
=	P(cavity	∧ toothache)	/	P(toothache)
=	(0.108	+	0.012)	/	(0.108	+	0.012	+	0.016	+	0.064)	=	0.6

Notice	that	denominators	are	identical	in	both	formulas!
We	even	do	not	need	to	know	the	exact	value	of	denominator:

P(¬cavity|toothache)	+	P(cavity|toothache)	=	1
We	can	use	a	normalization	constant	α instead,	computed	such	

that	the	evaluated	distribution	adds	up	to	1.
P(Cavity|toothache)	=	α P(Cavity,toothache)

=	α [P(Cavity,toothache,catch)	+	P(Cavity,toothache,¬catch)]
= α [	〈0.108,	0.016〉 +	〈0.012,	0.064〉 ]
= α [	〈0.12,	0.08〉 ]	= [	〈0.6,	0.4〉 ]



Inference	via	enumeration

In	a	typical	case,	we	know	values	e	of	random	variables	E
from	the	observation and	we	are	looking	for	probability	
distribution	of	random	variables	Y from	the	query.
The	other	random	variables	are	hidden	H =	X	– Y	– E.
P(Y |	E=e)	=	α P(Y,	E=e)	=	α Σh P(Y,E=e,H=h)

Some	drawbacks	of	inference	by	enumeration:
• the	worst-case	time	complexity	is	O(dn),	where	d	is	the	
number	of	values	in	domains	of	each	random	variable

• to	store	full	joint	probability	distribution	we	need	O(dn)	
space

• last	but	not	least,	it	is	not	easy	to	obtain
probabilities	for	all	possible	worlds

Independence

Let	us	expand	the	full	joint	distribution	by	adding	a	fourth	variable	
Weather	with	the	domain	{cloudy,	sunny,	rain,	snow}	– the	new	
full	joint	distribution	has	2x2x2x4	=	32	elements	(possible	worlds).

P(toothache,catch,cavity,cloudy)
=	P(cloudy|toothache,catch,cavity)	*	P(toothache,catch,cavity)

Do	one‘s	dental	problems	influence	the	weather?
P(cloudy|toothache,catch,cavity)	=	P(cloudy)

We	can	write	in	general:

P(Toothache,Catch,Cavity,Weather)
=	P(Toothache,Catch,Cavity)	*	P(Weather)

Hence	the	full	joint	distribution	can	be	constructed	from	two	
smaller	tables,	one	with	8	elements	and	one	with	4	elements.

This	property	is	called	(absolute)	independence:
P(X|Y)	=	P(X)	or	P(Y|X)	=	P(Y)	or	P(X,Y)	=	P(X).P(Y)



Conditional	independence

Full	independence	allows	us	reducing	the	size	of	the	domain	
representation,	but	unfortunately	full	independence	 is	rare	
and	even	independent	subsets	can	be	quite	large.

When	one	has	cavity,	does	catch	depend	on	toothache?
P(catch	|	toothache,	cavity)	=	P(catch	|	cavity)
P(catch	|	toothache,	¬ cavity)	=	P(catch	|	¬ cavity)

Random	variables	Catch	and	Toothache	are	independent	 if	
we	know	the	value	of	Cavity.

P(Catch	|	Toothache,	Cavity)	=	P(Catch	|	Cavity)

This	property	is	called	conditional	independence:
P(X|Y,Z)	=	P(X|Y)	or	P(Z|X,Y)	=	P(Z|Y)	or
P(Z,X|Y)	=	P(Z|Y)	P(X|Y)

Exploiting	conditional	independence

Conditional	independence	 can	be	used	to	further	reduce	
the	size	of	domain	representation.

P(Toothache,Catch,Cavity)
=	P(Toothache|Catch,Cavity)	P(Catch,Cavity)
=	P(Toothache|Catch,Cavity)	P(Catch|Cavity)	P(Cavity)
=	P(Toothache|Cavity)	P(Catch|Cavity)	P(Cavity)

The	full	joint	distribution	can	be	constructed	from	three	
smaller	tables	of	sizes	2	+	2	+	1	=	5	(only	independent	
elements	are	represented).



Diagnostic	systems

Let	us	go	back	to	diagnostic	problems.
Usually	we	are	looking	for	disease	(the	source	of	
problems)	based	on	symptoms	(observations).
– we	are	interested	in	the	diagnostic	direction	
expressed	as	conditional	probability	
P(disease|symptoms)

However,	from	past	experience	we	often	have	other	
information:
– the	probability	of	disease	P(disease)
– the	probability	of	symptoms	P(symptoms)
– the causal	relation	expressed	as	conditional	
probability	P(symptoms|disease)	

How	can	this	information	be	exploited	to	get	the	
probability	of	the	diagnostic	direction?

Bayes' rule

Recall	the	product	rule
P(a∧b)	=	P(a|b)	P(b)	=	P(b|a)	P(a)

We	can	deduce	a	so	called	Bayes‘	rule	(law	or	theorem):
P(a|b)	=	P(b|a)	P(a)	/	P(b)

in	general:
P(Y|X)	=	P(X|Y)	P(Y)	/	P(X)	= α P(X|Y)	P(Y)	

It	looks	like	two	steps	backward	as	now	we	need	to	know
P(X|Y),	P(Y),	P(X).
But	these	are	the	values	that	we	frequently	have.
P(cause|effect)	=	P(effect|cause)	P(cause)	/	P(effect)	
– P(effect|cause)	describes	the	causal	direction
– P(cause|effect)	describes	the	diagnostic	relation



Using	Bayes'	rule

Medical	diagnosis
– from	past	cases	we	know	P(symptoms|disease),	P(disease),	
P(symptoms)

– for	a	new	patient	we	know	symptoms	and	looking	for	diagnosis	
P(disease|symptoms)

Example:
– meningitis	causes	a	stiff	neck	70%	of	the	time
– the	prior	probability	of	meningitis	is	1/50	000
– the	prior	probability	of	stiff	neck	is	1%
What	is	the	probability	that	a	patient	having	a	stiff	neck	has	
meningitis?

P(m|s)	=	P(s|m).P(m)	/	P(s)	=	0.7	*	1/50000	/	0.01	=	0.0014

Why	the	conditional	probability	for	the	diagnostic	direction		is	not	
stored	directly?
• diagnostic	knowledge	is	often	more	fragile	than	causal	knowledge
• for	example,	if	there	is	a	sudden	epidemic	of	meningitis,	the	
unconditional	probability	of	meningitis	P(m)	will	go	up	so	P(m|s)	 should	
also	go	up	while	the	causal	relation	P(s|m)	is	unaffected	by	the	
epidemic,	as	it	reflects	how	meningitis	works

Naive	Bayes model

What	if	there	are	more	observations?
We	can	exploit	conditional	 independence	 as	follows

P(Toothache,Catch,Cavity)
=	P(Toothache|Cavity)	P(Catch|Cavity)	P(Cavity)

If	all	the	effects	are	conditionally	 independent	 given	
the	cause	variable,	we	get:

P(Cause,Effect1,…,Effectn)	 =	P(Cause)	Πi P(Effecti|Cause)
Such	a	probability	distribution	is	called	a	naive	Bayes	model

(it	is	often	used	even	in	cases	where	the	“effect”	variables	
are	not	actually	conditionally	 independent	given	the	value	of	
the	cause	variable).



The	Wumpus world	revisited

Wumpus is	back!
We	have	a	maze	with	pits	that	are	
detected	in	neighboring	squares	
via	breeze	(Wumpus and	gold	will	
not	be	assumed	now).

Where	does	the	agent	should	go,	
if	there	is	breeze	at	(1,2)	and	
(2,1)?

Pure	logical	inference	can	
conclude	nothing	about	which	
square	is	most	likely	to	be	safe!

To	which	square	does	the	agent	should	go?

Wumpus:	probabilistic	model

Boolean	variables:
Pi,j – pit	at	square	(i,j)
Bi,j – breeze	at	square	(i,j)
(only	for	the	observed	squares	B1,1,	B1,2 a	B2,1.

Full	joint	probability	distribution
P(P1,2,…,P4,4,B1,1,B1,2,B2,1)
=	P(B1,1,B1,2,B2,1	|P1,2,…,P4,4,)	*	P(P1,2,…,P4,4)
P(P1,2,…,P4,4)	=	Πi,j P(Pi,j)
P(P1,2,…,P4,4)	=	0.2n *	0.816-n

product rule

pits are spread independently

probability of pit is 0.2 and 
there are n pits



Wumpus:	query	and	simple	reasoning

Assume	that	we	have	evidence:
b	=	b1,1 ∧ b1,2 ∧ b2,1
known	=	¬p1,1 ∧ ¬p1,2 ∧ ¬p2,1

We	are	interested	in	answering	queries
such	as		P(P1,3	|	known,	b).	

Answer	can	be	computed	by	enumeration	of	the	full	
joint	probability	distribution.
Let	Unknown	be	the	variables	Pi,j except	P1,3	and	Known:
P(P1,3	|	known,	b)
=	Σunknown P(P1,3,	unknown,	known,	b)

But	it	means	to	explore	all	possible	values	of	variables	
Unknown	and	there	are	212 =	4096	terms!

Can	we	do	it	better	(faster)?

Wumpus:	conditional	independence

Observation:
The	observed	breezes	are	conditionally
independent	of	the	other	variables	given
the	known	(white),		frontier	(yellow),
and	query	variables.

We	split	the	set	of	hidden	variables	into	fringe	and	other	
variables:
Unknown	=	Fringe	∪ Other

From	conditional	independence	we	get:
P(b |	P1,3,	known,	unknown)	=	P(b |	P1,3,	known,	fringe)

Now,	let	us	exploit	this	formula.



Wumpus:	reasoning

P(P1,3 | known, b)
= α Σunknown P(P1,3, known, unknown, b)

= α Σunknown P(b | P1,3, known, unknown) * P(P1,3, known, unknown)

= α ΣfringeΣother P(b | P1,3, known, fringe,other) * P(P1,3, known, fringe,other)

= α ΣfringeΣother P(b | P1,3,known, fringe) * P(P1,3,known,fringe,other)

= α Σfringe P(b | P1,3,known, fringe) * Σother P(P1,3,known,fringe,other)

= α Σfringe P(b | P1,3,known, fringe) * Σother P(P1,3)P(known)P(fringe)P(other)

= α P(known)P(P1,3) Σfringe P(b | P1,3,known, fringe) P(fringe) Σother P(other)

= α´ P(P1,3) Σfringe P(b | P1,3,known, fringe) P(fringe)

α� = α. P(known)
Σother P(other) = 1

product rule P(X,Y) = P(X|Y) P(Y)

Wumpus:	solution

P(P1,3	|	known,	b)	=	α´ P(P1,3)	Σfringe P(b	|	P1,3,known,	fringe)	P(fringe)
Let	us	explore	possible	models	(values)	of	Fringe	that	are	
compatible	with	observation	b.

P(P1,3	|	known,	b)	
=	α´ 〈0.2	(0.04	+	0.16	+	0.16),	0.8	(0.04	+	0.16) 〉
=	〈 0.31,	0.69 〉

P(P2,2	|	known,	b)	=	〈 0.86,	0.14 〉

Definitely	avoid	the	square	(2,2)!



Summary

Probability	theory	is	a	formal	mechanism	to	handle	
uncertainty.
Full	joint	distribution	describes	probabilities	 of	all	
possible	worlds.
Answers to	queries	can	be	obtained	by	summing	out	
probabilities	 of	possible	worlds	consistent	with	the	
observation.
However,	larger	problems	will	require	a	better	
approach.
We	are	going	to	exploit	 independence and	
conditional	independence.
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