
Artificial Intelligence

Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

Automated Planning

Today we will explore techniques for action planning –
how to find a sequence of actions to reach a given goal.

• problem representation
– situation calculus (pure logical representation)
– using sets of predicates (instead of formulas)
– planning domain vs. planning problem

• planning techniques
– state-space planning

• forward and backward
– plan-space planning

• partially ordered plans

Introduction

We can simplify the full FOL model into a so called classical
representation of planning problems.
State is a set of instantiated atoms (no variables). There is a
finite number of states!

– The truth value of some atoms is
changing in states:
• fluents
• example: at(r1,loc2)

– The truth value of some state is
the same in all states
• rigid atoms
• example: adjacent(loc1,loc2)

We will use a classical closed world assumption.
An atom, that is not included in the state, does not hold at that state!

Classical representation: states

operator o is a triple (name(o), precond(o), effects(o))
– name(o): name of the operator in the form n(x1,…,xk)

• n: a symbol of the operator (a unique name for each operator)
• x1,…,xk: symbols for variables (operator parameters)

– Must contain all variables appearing in the operator definition!

– precond(o):
• literals that must hold in the state so the operator is applicable on it

– effects(o):
• literals that will become true after operator application (only fluents

can be there!)

Classical representation: operators

An action is a fully instantiated operator
– substitute constants to variables

action

operator

Classical representation: actions

Notation (let S be a set of literals):
– S+ = {positive atoms in S}
– S– = {atoms, whose negation is in S}

Action a is applicable to state s if and only if
precond+(a) Í s Ù precond–(a) Ç s = Æ

The result of application of action a to s is
g(s,a) = (s – effects–(a)) È effects+(a)

Classical representation: action usage

Let L be a language and O be a set of operators.

Planning domain S over language L with operators O is a
triple (S,A,g):
– states S Í P({all instantiated atoms from L})
– actions A = {all instantiated operators from O over L}

• action a is applicable to state s if
precond+(a) Í s Ù precond–(a) Ç s = Æ

– transition function g:
• g(s,a) = (s – effects-(a)) È effects+(a), if a is applicable on s
• S is closed with respect to g (if s Î S, then for every action a

applicable to s it holds g(s,a) Î S)

Classical representation: planning domain

Planning problem P is a triple (S,s0,g):
– S = (S,A,g) is a planning domain
– s0 is an initial state, s0 Î S
– g is a set of instantiated literals

• state s satisfies the goal condition g if and only if
g+ Í s Ù g–Ç s = Æ

• Sg = {s Î S | s satisfies g} – a set of goal states

Plan is a sequence of actions áa1,a2,…,akñ.
Plan p = áa1,a2,…,akñ is a solution plan for problem P iff
g*(s0,p) satisfies the goal condition g.
Usually the planning problem is given by a triple (O,s0,g).

– O defines the the operators and predicates used (domain
model)

– s0 provides the particular constants (objects)

Classical representation: planning problem

s1= g = {loaded(r1,c3), at(r1,loc2)}

ámove(r1,loc2,loc1),
take(crane1,loc1,c3,c1,p1),
load(crane1,loc1,c3,r1),
move(r1,loc1,loc2)ñ

átake(crane1,loc1,c3,c1,p1),
move(r1,loc2,loc1),
load(crane1,loc1,c3,r1),
move(r1,loc1,loc2)ñ

our goal

Classical representation: example plan

The search space corresponds to the state space of the
planning problem.

– search nodes correspond to world states
– arcs correspond to state transitions by means of actions
– the task is to find a path from the initial state to some goal

state
Basic approaches

– forward search (progression)
• start in the initial state and apply actions until reaching a goal state

– backward search (regression)
• start with the goal and apply actions in the reverse order until a

subgoal satisfying the initial state is reached
• lifting (actions are only partially instantiated)

State-space planning

move r1

take c2
…

take c3

of an operator in O,

Forward planning: algorithm

{belong(crane1,loc1), adjacent(loc2,loc1),
holding(crane1,c3), unloaded(r1),
at(r1,loc2), ¬occupied(loc1),
occupied(loc2),…}

move(r1,loc2,loc1)

{belong(crane1,loc1),
adjacent(loc2,loc1), holding(crane1,c3), unloaded(r1),
at(r1,loc1), occupied(loc1), …}

load(crane1,loc1,c3,r1)

{belong(crane1,loc1), adjacent(loc2,loc1),
empty(crane1), loaded(r1,c3),
at(r1,loc1), occupied(loc1), …}

Goal = {at(r1,loc1),loaded(r1,c3)}

initial state

loc1
goal

Forward planning: an example

Start with a goal (not a goal state as there might be more
goal states) and through sub-goals try to reach the initial
state.

Action a is relevant for a goal g if and only if:
– action a contributes to goal g: g Ç effects(a) ¹ Æ
– effects of action a are not conflicting goal g:

• g-Ç effects+(a) = Æ
• g+ Ç effects-(a) = Æ

A regression set of the goal g for (relevant) action a is
g-1(g,a) = (g - effects(a)) È precond(a)

Example:
goal: {on(a,b), on(b,c)}
action stack(a,b) is relevant
by backward application of the action we get a new goal:
{holding(a), clear(b), on(b,c)}

stack(x,y)
Precond: holding(x), clear(y)
Effects: ¬ holding(x), ¬ clear(y),

on(x,y), clear(x), handempty

Backward planning

take c3,c1

take c3,c2
move r1

Backward planning: algorithm

Goal = {at(r1,loc1),loaded(r1,c3)}

load(crane1,loc1,c3,r1)

{at(r1,loc1), belong(crane1,loc1),
holding(crane1,c3), unloaded(r1)}

move(r1,loc2,loc1)

{belong(crane1,loc1), holding(crane1,c3),
unloaded(r1),
adjacent(loc2,loc1),
at(r1,loc2),
¬ occupied(loc1)}

loc1

Initial state

Backward planning: an example

Notes:
• standardization = a copy with fresh variables
• mgu = most general unifier
• by using the variables we can decrease the branching factor

but the trade off is more complicated loop check

Backward planning: lifting

The principle of plan space planning is similar to
backward planning:
– start from an “empty” plan containing just the

description of initial state and goal
– add other actions to satisfy not yet covered (open)

goals
– if necessary add other relations between actions in

the plan

Planning is realised as repairing flaws in a partial
plan
– go from one partial plan to another partial plan until

a complete plan is found

Plan-space planning: a core idea

Assume a partial plan with the following two actions:
– take(k1,c1,p1,l1)
– load(k1,c1,r1,l1)

Possible modifications of the plan:
– adding a new action

• to apply action load, robot r1 must be at location l1
• action move(r1,l,l1) moves robot r1 to location l1 from some location l

– binding the variables
• action move is used for the right robot and the right location

– ordering some actions
• the robot must move to the location before the action load can be used
• the order with respect to action take is not relevant

– adding a causal relation
• new action is added to move the robot to a given location that is a

precondition of another action
• the causal relation between move and load ensures that no other action

between them moves the robot to another location

Plan space planning: an example

The initial state and the goal are encoded using two
special actions in the initial partial plan:

– Action a0 represents the initial state in such a way that
atoms from the initial state define effects of the action and
there are no preconditions. This action will be before all
other actions in the partial plan.

– Action a¥ represents the goal in a similar way – atoms from
the goal define the precondition of that action and there is
no effect. This action will be after all other actions.

Planning is realised by repairing flaws in the partial
plan.

Plan space planning: the initial plan

The search nodes correspond to partial plans.

A partial plan P is a tuple (A,<,B,L), where
– A is a set of partially instantiated planning

operators {a1,…,ak}
– < is a partial order on A (ai<aj)
– B is set of constraints in the form x=y, x¹y or xÎDi

– L is a set of causal relations (ai®paj)
• ai,aj are ordered actions ai<aj

• p is a literal that is effect of ai and precondition of aj

• B contains relations that bind the corresponding
variables in p

Search nodes and partial plans

action
precondition

action
effect

causal
relations

partial
ordering

Partial plan: an example

Open goal is an example of a flaw.
This is a precondition p of some operator b in the partial
plan such that no action was decided to satisfy this
precondition (there is no causal relation ai®pb).

The open goal p of action b can be resolved by:
– finding an operator a (either present in the partial plan or a

new one) that can give p (p is among the effects of a and a
can be before b)

– binding the variables from p
– adding a causal relation a®pb

Open goals

Threat is another example of flaw.
It is an action that can influence existing causal relation.

– Let ai®paj be a causal relation and action b has among its
effects a literal unifiable with the negation of p and action b
can be between actions ai and aj. Then b is threat for that
causal relation.

We can remove the threat by one of the following ways:
– ordering b before ai

– ordering b after aj

– binding variables in b
in such a way that p
does not bind with
the negation of p

Threats

Partial plan P = (A,<,B,L) is a solution plan for the problem P =
(S,s0,g) if:

– partial ordering < and constraints B are globally consistent
• there are no cycles in the partial ordering
• we can assign variables in such a way that constraints from B hold

– Any linearly ordered sequence of fully instantiated actions from A
satisfying < and B goes from s0 to a state satisfying g.

Hmm, but this definition does not say how to verify that a
partial plan is a solution plan!

Claim: Partial plan P = (A,<,B,L) is a solution plan if:
– there are no flaws (no open goals and no threats)
– partial ordering < and constraints B are globally consistent

Solution plan

PSP = Plan-Space Planning

Notes:
• The selection of flaw is deterministic (all flaws must be resolved).
• The resolvent is selected non-deterministically (search in case of

failure).

Plan-space planning: algorithm

Course Planning and scheduling
– http://ktiml.mff.cuni.cz/~bartak/planovani/

More on automated planning

Course summary

An agent view of Artificial Intelligence
– an agent is an entity perceiving environment and acting

upon it
– a rational agent maximizes expected performance

Problem solving with simple state space
– search techniques
– exploiting extra information –> heuristic search A*
– factored states –> constraint satisfaction
– more agents –> adversarial search (games)

Knowledge representation
– propositional and first-order logic
– inference procedures

Automated planning
– situation calculus
– state-space and plan-space planning

© 2013 Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

bartak@ktiml.mff.cuni.cz

