Artificial IntelligenceZ

Today we will explore techniques for action planning —
how to find a sequence of actions to reach a given goal.
* problem representation
— situation calculus (pure logical representation)
— using sets of predicates (instead of formulas)
— planning domain vs. planning problem

e planning techniques
— state-space planning
* forward and backward
— plan-space planning
e partially ordered plans

We can simplify the full FOL model into a so called classical
representation of planning problems.

State is a set of instantiated atoms (no variables). There is a

finite number of states!

cranel
c2
c3
2
cl P
pl
locl

ri

— The truth value of some atoms is
changing in states:

e fluents
 example: at(r1,loc2)

S |

o — The truth value of some state is

loc2 the same in all states

{attached(pl,locl), in(cl,pl), in(c3,pl),
top(c3,pl), on(c3,cl), on(cl,pallet), attached(p2,locl), in(c2,p2), top(c2,p2),

* rigid atoms

on(c2,pallet), belong(cranel,locl), empty(cranel), adjacent(locl,loc2), adja- o . i
cent(loc2,locl), at(rl,loc2), occupied(loc2), unloaded(rl)}. EXGmp/e. GdeICE”t(/OCl,/OCZ)

We will use a classical closed world assumption.
An atom, that is not included in the state, does not hold at that state!

operator o is a triple (name(o), precond(o), effects(o))

— name(0): name of the operator in the form n(x,...,x,)

* n:asymbol of the operator (a unique name for each operator)

* Xq,...,Xc: Symbols for variables (operator parameters)
— Must contain all variables appearing in the operator definition!

— precond(o):
* literals that must hold in the state so the operator is applicable on it
— effects(o):

* literals that will become true after operator application (only fluents
can be there!)

take(k,l,c,d,p)
.. crane k at location [takes ¢ off of d in pile p
precond: belong(k, 1), attached(p,), empty(k), top(c, p),on(c, d)

effects: holding(k, ¢), mempty(k), = in(c,p), 2 top(c, p), mon(c, d), top(d. p)

Classical representation: actions

An action is a fully instantiated operator
— substitute constants to variables
- ‘cranel / I
take(k, [, ¢, d, p) a— : i

.» crane k at location [takes ¢ off of d in pile p operator
precond: belong(k, 1), attached(p,), empty(k), top(c,p),on(e, d)
effects: holding(k, ¢), ~empty(k), —in(c,p), ~top(c, p), ~on(c, d), top(d, p)

take(cranel,locl,c3,cl,pl) action
.; crane cranel at location locl takes c3 off cl in pile pl
precond: belong(cranel,locl), attached(pl,locl), <
empty(cranel), top(c3,pl), on(c3,cl)

effects: holding(cranel,c3), —empty(cranel), —in(c3,pl),
—top(c3,pl), —on(c3,cl), top(cl,pl)

Classical representation: action usage

Notation (let S be a set of literals):
— S* = {positive atoms in S}
— S~ ={atoms, whose negation is in S}

Action a is applicable to state s if and only if
precond*(a) s A precond (a)Ns=O

The result of application of action ato s is
v(s,a) = (s — effects™(a)) U effects*(a)

take(cranel,locl,c3,cl,pl)

;; crane cranel at location locl takes c3 off c1 in pile pl
precond: belong(cranel,locl), attached(pl,locl),
empty(cranel), top(c3,pl), on(c3,cl) a1

effects: holding(cranel,c3), —empty(cranel), —in(c3,pl),

—top(c3,pl), —on(c3,cl), top(cl,pl)

4

pl

locl loc2

cranel
= (21, ——
PR jl
cl ri

loc2

Let L be a language and O be a set of operators.

Planning domain X over language L with operators O is a
triple (S,A,y):
— states S — P({all instantiated atoms from L})
— actions A = {all instantiated operators from O over L}

e action a is applicable to state s if
precond*(a) s A precond(a) N"s=C
— transition function v:
* y(s,a) = (s — effects’(a)) U effects*(a), if ais applicable on s

* Sis closed with respect to y (if s € S, then for every action a
applicable to s it holds y(s,a) € S)

Planning problem P is a triple (%,s,,8):
— 2 =(S,A,y) is a planning domain
— Sy is an initial state, s, € S
— gis a set of instantiated literals

 state s satisfies the goal condition g if and only if
grcs AgnNs=4

* S;={s € S | ssatisfies g} — a set of goal states

Plan is a sequence of actions (a@y,a,,...,dy).

Plan = (a,,a,,...,a,) is a solution plan for problem P iff
v*(so,m) satisfies the goal condition g.

Usually the planning problem is given by a triple (O,s,,g).

— O defines the the operators and predicates used (domain
model)

— Sy provides the particular constants (objects)

Classical representation: example plan

Z
[

’

cranel

O
N

c3 / V

cl ri ri c3
L= | £
b2 oo |]|:| our goal > 2 o
locl loc2 loc2

s,= {attached(pllocl), in(cl,pl), in(c3,pl), g = {loaded(r1,c3), at(r1,loc2)}
top(c3,pl), on(c3,cl), on(cl,pallet), attached(p2,locl), in(c2,p2), top(c2,p2),
on(c2,pallet), belong(cranel,locl), empty(cranel), adjacent(locl,loc2), adja-
cent(loc2,locl), at(rl,loc2), occupied(loc2), unloaded(rl)}.

U|
N

1

cranel

N
o
e 2A
Tilq
N
(J-‘
-
O
W

locl loc2

The search space corresponds to the state space of the
planning problem.
— search nodes correspond to world states
— arcs correspond to state transitions by means of actions
— the task is to find a path from the initial state to some goal
state
Basic approaches

— forward search (progression)
e start in the initial state and apply actions until reaching a goal state

— backward search (regression)

e start with the goal and apply actions in the reverse order until a
subgoal satisfying the initial state is reached

* lifting (actions are only partially instantiated)

Forward planning: algorithm

Forward-search(O, s¢, g)

S ¢« 50

m «— the empty plan

loop
if s satisfies g then return 7
E — {a|a is a ground instance of an operator in O,

and precond(a) is true in s}

if £ = () then return failure
nondeterministically choose an action a € E

s «— (s, a)
’ cranel
e .4 &
= aumn
<71 2
take c3 b1 < 5 7 4
cranel locl loc2
—
5 (o U
Acl b r1
p1 _/JOO take c2
locl loc2

move r1

{belong(cranel,locl), adjacent(loc2,locl)
holding(cranel,c3), unloaded(rl),

at(rl,loc2), , =2/
occupied(loc?),...} ... & @
loc1 ' Joc2
mOVE(rl,IOCZIIOC]_) | move(r, [, m)

.. robot moves from location [to location m

precond: adjacent(l,m),at(r,l), —~occupied(m)
{be|0ng(crane1 IOC]_) effects: at(r,m), occupied(m), —~occupied(l), —at(r,/)

/ /4

adjacent(loc2,locl), holding(cranel,c3), unloaded(rl),
at(rl,locl), occupied(locl), ...}

load(k, L, c,7)

Ioad(cra ne 1,|oc 1,C3,r1) v crane k at location [loads container ¢ onto robot r

precond: belong(k, 1), holding(k, ¢),at(r, 1), unloaded(r)
effects: empty(k), = holding(k, ¢), loaded(r, ¢), = unloaded(r)

{belong(cranel,locl), adjacent(loc2,locl),
empty(cranel), loaded(r1,c3),
at(rl,locl), occupied(locl), ...}

locl

Goal = {at(r1,locl),loaded(rl,c3)} f e

Start with a goal (not a goal state as there might be more
goal states) and through sub-goals try to reach the initial
state.

Action a is relevant for a goal g if and only if:
— action a contributes to goal g: g N effects(a) # &
— effects of action a are not conflicting goal g:
e g effects*(a) = O
e gt effects’(a) = O

A re§ression set of the goal g for (relevant) action a is
v*(g,a) = (g - effects(a)) U precond(a)

E I . stack(x,y)

Xamp €. Precond: holding(x), clear(y)
goal: {on(a,b), on(b,c)} Effects: — holding(x), — clear(y),
action stack(a,b) is relevant Dbl BEEILE, MENEEE

by backward application of the action we get a new goal:
{holding(a), clear(b), on(b,c)}

Backward planning: algorithm

Backward-search(O, sg, g)
m «— the empty plan
loop
if s satisfies ¢ then return
A «— {ala is a ground instance of an operator in O

and 7 !(g,a) is defined}
if A = () then return failure
nondeterministically choose an action a € A

mw— Q.7
—1
g =7 '(9,0) =
= | =
i i
// o w/
take c3,c1 / /
locl loc2
cranel
L/
5 , take ¢3,c2
[a e 1 move r1
pl O 00

locl loc2

Goal = {at(r1,locl),loaded(r1,c3)} N,

load(k, 1, ¢, 7

Ioad(cranel,IOC].,C3,r1) ; crane k at location [loads container ¢ onto robo

precond: belong(k, 1), holdin g(/) at(r, 1), unloaded (7

effects: empty(k), - holding(k, ¢), loaded(r, ¢), = unloaded (7

{at(r1,locl), belong(cranel,locl),

move(
4 1 obot * moves from Iocato [to location m
ove(rl IOCZ IOC1) nd: adJace t r,l), ~occupied(m
ts: ,occu ped(1), ~occupied(l), -

at(

r,l)

{belong(cranel,locl), holdlng(cranel,c3),

holding(cranel,c3), unloaded(rl)}
m
unloaded(rl),

adjacent(loc2,locl), -
at(rl,loc2), -
— occupied(locl)} z o

Backward planning: lifting

Lifted-backward-search(O, sq. g)
7w «— the empty plan
loop
if s(satisfies g then return w
A «— {(0,8)|o is a standardization of an operator in O,
6 is an mgu for an atom of g and an atom of effects (o),
and v 1(60(g),0(0)) is defined}
if A = () then return failure
nondeterministically choose a pair (0,0) € A
7 «— the concatenation of #(0) and €(m)

g —~'(0(g),0(0))

Notes:
e standardization = a copy with fresh variables
* mgu = most general unifier

* by using the variables we can decrease the branching factor
but the trade off is more complicated loop check

The principle of plan space planning is similar to
backward planning:

— start from an “empty” plan containing just the
description of initial state and goal

— add other actions to satisfy not yet covered (open)
goals

— if necessary add other relations between actions in
the plan

Planning is realised as repairing flaws in a partial
plan

— go from one partial plan to another partial plan until
a complete plan is found

Assume a partial plan with the following two actions:
— take(k1,c1,p1,I1)
— load(k1,c1,r1,I1)

Possible modifications of the plan:

— adding a new action
* to apply action load, robot r1 must be at location |1
e action move(rl,l,I1) moves robot rl to location |1 from some location |
— binding the variables
e action move is used for the right robot and the right location
— ordering some actions
* the robot must move to the location before the action load can be used
* the order with respect to action take is not relevant
— adding a causal relation

* new action is added to move the robot to a given location that is a
precondition of another action

e the causal relation between move and load ensures that no other action
between them moves the robot to another location

The initial state and the goal are encoded using two
special actions in the initial partial plan:
— Action a, represents the initial state in such a way that

atoms from the initial state define effects of the action and

there are no preconditions. This action will be before all
other actions in the partial plan.

— Action a, represents the goal in a similar way — atoms from
the goal define the precondition of that action and there is
no effect. This action will be after all other actions.

Planning is realised by repairing flaws in the partial
plan.

The search nodes correspond to partial plans.

A partial plan I1 is a tuple (A,<,B,L), where
— A is a set of partially instantiated planning
operators {ay,...,a.}
— < is a partial order on A (a<a))
— B is set of constraints in the form x=y, x=y or xeD,

— Lis a set of causal relations (a,—"a;)
* a;,a; are ordered actions a;<a;
* pis a literal that is effect of a; and precondition of a

* B contains relations that bind the corresponding
variables in p

Partial plan: an example

action
precondition

causal
relations

~--at(rl,11) QO
O_Q r=-in(cl,pl) - p==t--=holding(kl,c1) °
‘ i empty (k1) b unloaded(rl)
i I I
| rftake(kl,c1,p1,11)[" T T l1oad(kl,cl,rl,11) ‘
[T)
| holding(kl,cl)----! | Toaded (ri,cl)
a, ,f —in(cl,pl) - : empty (k1)
. d - i
in(cl,pl)~ A
at(r1,13) ' ' .
TN | adjacent(1,11), | incl.p2)
S at(rl,1) _ ! QL> T
—occupied(11) I Q
—) o
> move(rl,l,11) o :
at(r‘]-’.ll) ___________ I partial
—at(rl,1) ordering
—occupied(11)
(e}
O occupied(l)
action

effect

Open goal is an example of a flaw.

This is a precondition p of some operator b in the partial
plan such that no action was decided to satisfy this
precondition (there is no causal relation a,—Pb).

The open goal p of action b can be resolved by:

— finding an operator a (either present in the partial plan or a

new one) that can give p (p is among the effects of a and a
can be before b)

— binding the variables from p
— adding a causal relation a—PFb

Threat is another example of flaw.

It is an action that can influence existing causal relation.

— Let a,—Pa; be a causal relation and action b has among its

effects a literal unifiable with the negation of p and action b
can be between actions a; and a;. Then b is threat for that

causal relation.

We can remove the threat by one of the fo

— ordering b before a;

lowing ways:

>~ 21 (1°1,11)

- F-=1in(cl,pl) ==f---- »holding(kl,cl)
! empty (k1) | unloaded(rl)
. |
— Orde”ng b after aj i —>|take(k1,c1,p1,11)|"i—f::]1oad(k1,c1,r1,11)h'
: holding(kl,cl) —---- loaded(rl,cl)
— binding variablesin b - J| et empty (k1)
[y
in such a way that p LoD et 110,
.] at(rl’n)\n—»at(rl,l) m
does not bind with —occupied(11)
. ——>| move(rl,1,11)
the negation of p R —
—at(rl,l .
: —occupied(11)
occupied(l) %

in(c1,p2)

Partial plan IT = (A,<,B,L) is a solution plan for the problem P =
(Z/SO/g) If

— partial ordering < and constraints B are globally consistent
* there are no cycles in the partial ordering
* we can assign variables in such a way that constraints from B hold

— Any linearly ordered sequence of fully instantiated actions from A
satisfying < and B goes from s, to a state satisfying g.

Hmm, but this definition does not say how to verify that a
partial plan is a solution plan!

Claim: Partial plan I1 = (A,<,B,L) is a solution plan if:
— there are no flaws (no open goals and no threats)
— partial ordering < and constraints B are globally consistent

Plan-space planning: algorithm

PSP = Plan-Space Planning

PSP(x)
flaws «+— OpenGoals(w) U Threats(x)
if flaws = O then return(r)
select any flaw ¢ = flaws
resolvers «— Resolve(d,)
if resolvers = () then return(failure)
nondeterministically choose a resolver p © resolvers
7! «— Refine(p,)
return(PSP(='}))
end

Notes:
* The selection of flaw is deterministic (all flaws must be resolved).

* The resolvent is selected non-deterministically (search in case of
failure).

More on automated planning

ourse Planning and scheduling
— http://ktiml.mff.cuni.cz/~bartak/planovani/

{

- <

x Norton- Q v @ Karty a prihlaSovaci Gdaje ~

< Oblibené polozky |gp|anova.,iammhmni &~ v [deh v Strankav Zabezpeceniv Nastrojev @~

Planovani a rozvrhovani I
NAILO71, 2/0 Zk, letni semestr

Roman Bartak, KTIML

Zdroje | Pfednaska | ZkousSka | Kontakt

Planovani je rozumovou slozkou konani. Jeho cilem je vybrat a usporadat akce tak, aby se co nejlépe
dosdhlo vytyceného cile. Rovrhovani se potom stard o optimalni realizaci planu v prostiedi s
omezenymi zdroji a ¢asem.

Zdroje: nahoru

PFednaska je pfipravena pfevazné podle knihy M. Ghallab, D. Nau, P. Traverso: Automated

Planning: Theory and Practice, Morgan Kaufmann, 2004. Materidly ke knize jsou dostupné

na webu. AUTOMATED
= PL NING

Nékteré pasaZe jsou podrobnéji zpracovany v anglickych tutoridlech:

« Constraint Satisfaction for Pl ing and Scheduling [WWW], ICAPS 2004
« Filtering Techniques in Planning and Scheduling [slajdy], ICAPS 2006

Dalsi informace lze Cerpat ze stranek sité excelence PLANET, konferenci ICAPS a MISTA.

PrFednaska (Ls 2009/2010): nahoru
pondéli 9:00 - 10:30, poslucharna S3 (Mala Strana, 3. patro)

Tento rozvrh je pfedb&zny a je mozné, Ze bude v pribéhu semestru modifikovan.

M Pocitaé | Chranény rezim: Vypnuto

An agent view of Artificial Intelligence

— an agent is an entity perceiving environment and acting
upon it

— a rational agent maximizes expected performance
Problem solving with simple state space

— search techniques

— exploiting extra information —> heuristic search A*

— factored states —> constraint satisfaction

— more agents —> adversarial search (games)
Knowledge representation

— propositional and first-order logic

— inference procedures
Automated planning

— situation calculus

— state-space and plan-space planning

© 2013 Roman Bartak
Department of Theoretical Computer Science and Mathematical Logic
bartak@ktiml.mff.cuni.cz

