
Artificial Intelligence

Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

Knowledge Representation

Knowledge representation

How to effectively construct a knowledge base?
How should axioms look like?

• Representing objects
– objects, categories, and ontologies

• Representing time and actions
– situation calculus
– frame problem

Let us notice that
– agents manipulate with real objects
– but reasoning is done at the level of categories
– An agent uses observations to find properties of

objects that are used to assign objects to categories.
Reasoning on category then reveals useful
information about the object itself.

Category
= a set of its members
= a complex object with relations

• MemberOf
• SubsetOf

Objects and categories

How to represent a category in FOL?
• an object is a member of a category

– MemberOf(BB12,Basketballs)
• a category is subset of another category

– SubsetOf(Basketballs,Balls)
• all members of the category have some property

– "x (MemberOf(x,Basketballs) Þ Round(x))
• all members of the category can be recognized using

common properties
– "x (Orange(x) Ù Round(x) Ù Diameter(x)=9.5in Ù

MemberOf(x,Balls) Þ MemberOf(x,BasketBalls))
• category may also have some property

– MemberOf(Dogs,DomesticatedSpecies)

Categories in FOL

Categories organize and simplify knowledge base
by using inheritance of properties.
– properties are defined for a category, but they are

inherited to all members of the category
– food is eatable, fruits are food, apples are fruits, and

hence apples are eatable
Subclasses organize categories to a taxonomy
– a hierarchical structure that is used to categorize

objects
– originally proposed for classifying living organisms

(alpha taxonomy)
– categories for all knowledge

• Used in libraries
• Dewey Decimal Classification
• 330.94 European economy

Taxonomy

So far we modelled a static world only.
How to reason about actions and their effects in time?
In propositional logic we need a copy of each action for
each time (situation):
– Ltx,y Ù FacingRightt Ù ForwardtÞ Lt+1x+1,y
– We need an upper bound for the number of steps to reach a

goal but this will lead to a huge number of formulas.

Can we do it better in first order logic?
– We do not need copies of axioms describing state changes;

this can be implemented using a universal quantifier for time
(situation)

– "t P is the result of action A in time t+1

Actions and situations

• actions are represented by terms
– Go(x,y)
– Grab(g)
– Release(g)

• situation is also a term
– initial situation: S0
– situation after applying action a to state s: Result(a,s)

• fluent is a predicate changing with time
– the situation is in the last argument of that term
– Holding(G, S0)

• rigid (eternal) predicates
– Gold(G)
– Adjacent(x,y)

Situation calculus

We need to reason about sequences of actions – about
plans.
– Result([],s) = s
– Result([a|seq],s) = Result(seq, Result(a,s))

What are typical tasks related to plans?
– projection task – what is the state/situation after applying a

given sequence of actions?
• At(Agent, [1,1] , S0) Ù At(G, [1,2], S0) Ù¬Holding(o, S0)
• At(G, [1,1], Result([Go([1,1],[1,2]),Grab(G),Go([1,2],[1,1])], S0))

– planning task – which sequence of actions reaches a given
state/situation?
• $seq At(G, [1,1], Result(seq, S0))

location 1 location 2

s0

location 1 location 2

s1 s4

location 1 location 2location 1 location 2

s3

Situation calculus: plans

Each action can be described using two axioms:
– possibility axiom: Preconditions Û Poss(a,s)

• At(Agent,x,s) Ù Adjacent(x,y) Û Poss(Go(x,y),s)
• Gold(g) Ù At(Agent,x,s) Ù At(g,x,s) Û Poss(Grab(g),s)
• Holding(g,s) Û Poss(Release(g),s)

– effect axiom: Poss(a,s) Þ Changes
• Poss(Go(x,y),s) Þ At(Agent,y,Result(Go(x,y),s))
• Poss(Grab(g),s) Þ Holding(g,Result(Grab(g),s))
• Poss(Release(g),s) Þ ¬Holding(g,Result(Release(g),s))

Beware! This is not enough to deduce that a plan reaches a given
goal.

We can deduce At(Agent, [1,2], Result(Go([1,1],[1,2]), S0))
but we cannot deduce At(G, [1,2], Result(Go([1,1],[1,2]), S0))

Effect axioms describe what has been changed in the world but they
say nothing about the property that everything else is not changed!
This is a so called frame problem.

Situation calculus: actions

We need to represent properties that are not
changed by actions.
A simple frame axiom says what is not changed:

At(o,x,s) Ù o¹Agent Ù ¬Holding(o,s) Þ
At(o,x,Result(Go(y,z),s))

– for F fluents and A actions we need O(FA) frame
axioms

– This is a lot especially taking in account that most
predicates are not changed.

Frame problem

Can we use less axioms to model the frame problem?
• successor-state axiom

Poss(a,s) Þ
(fluent holds in Result(a,s) Û

fluent is effect of a Ú (fluent holds in s Ù a does not change fluent))
– We get F axioms (F is the number of fluents) with O(AE) literals in total (A is

the number of actions, E is the number of effects).
Examples:

Poss(a,s) Þ
(At(Agent,y,Result(a,s)) Û a=Go(x,y) Ú (At(Agent,y,s) Ù a¹Go(y,z)))

Poss(a,s) Þ
(Holding(g,Result(a,s)) Û a=Grab(g) Ú (Holding(g,s) Ù a¹Release(g)))

Beware of implicit effects!
• If an agent holds some object and the agent moves then the object also

moves.
• This is called a ramification problem.
Poss(a,s) Þ

(At(o,y,Result(a,s)) Û
(a=Go(x,y) Ù (o=Agent Ú Holding(o,s))) Ú
(At(o,y,s) Ù¬$z (y¹z Ù a=Go(y,z) Ù (o=Agent Ú Holding(o,s)))))

Frame problem: better axioms

Successor-state axiom is still too big with O(AE/F) literals in average.
– To solve the projection task with t actions, the time complexity depends on

the total number of actions – O(AEt) – rather than on the actions in plan.
– If we know each action, cannot we do it better, say O(Et)?

classical successor-state axiom:
Poss(a,s) Þ

(Fi(Result(a,s)) Û (a=A1 Ú a=A2 Ú …) Ú (Fi(s) Ù a¹A3 Ù a¹A4 …))

We can introduce positive and negative effects of actions:
– PosEffect(a, Fi) action a causes Fi to become true
– NegEffect(a, Fi) action a causes Fi to become false

modified successor-state axiom:
Poss(a,s) Þ (Fi(Result(a,s)) Û PosEffect(a, Fi) Ú (Fi(s) Ù ¬NegEffect(a,Fi)))
PosEffect(A1, Fi)
PosEffect(A2, Fi)
NegEffect(A3, Fi)
NegEffect(A4, Fi)

actions having Fi among effects actions having ¬Fi among effects

Frame problem: even better axioms

© 2020 Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

bartak@ktiml.mff.cuni.cz

