
Artificial Intelligence

Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

Problem Solving: Uninformed Search



Introduction

Simple reflex agent „only“ transfers the current 
percept to one action. 
Goal-based agent can plan action sequences that 
achieve agent’s goals.

– We will now explore one kind of goal-based agent –
a problem-solving agent.

– What is a problem and what is its solution?
– How to find a solution?
– Search algorithms

BFS, DFS, DLS, IDS, BiS
Note:

First, we will explore “uninformed” search algorithms, 
that is, algorithms that do not exploit any problem 
specific information (and use an atomic representation).



Example

Intelligent agents are supposed to maximize their performance measure. 
This can be simplified if the agent can adopt a goal and aim at satisfying 
it.
A model problem and a possible way to solve it

– an agent is in the city of Arad (Romania)
– the performance measure contains many factors (improve its suntan, take 

in the sights, enjoy the nightlife, …), which make decisions hard
– now, suppose the agent has a non-refundable ticket to fly out of Bucharest 

the following day
– goal formulation – getting to Bucharest – greatly simplifies the agent’s 

decision problem
– a goal is a set of world states, where the goal is satisfied, but we also need 

to assume other world states and actions for moving between – problem 
formulation
• states could correspond to being in major towns (the exact location is too fine)
• actions could correspond to driving from one major town to another 

(acceleration and breaking are too fine)
– How to find a path to Bucharest, if three roads lead out from Arad, one 

toward Sibiu, one to Timisoara, and one to Zerind?
• Suppose the agent has a map of Romania and can explore possible journeys 

(search), select the best one, and then finally execute the actions.



Problem solving

Problem solving consists of four steps:
– goal formulation

• What are the desired states of the world?
– problem formulation

• What are the states and actions assumed to reach the goal?
– problem solving

• How to find the best sequence of states reaching the goal?
– solution execution

• If we know the actions, how to execute them?

Problem solving consists of four steps:
– goal formulation

• What are the desired states of the world?
– problem formulation

• What are the states and actions assumed to reach the goal?
– problem solving

• How to find the best sequence of states reaching the goal?
– solution execution

• If we know the actions, how to execute them?



Problem formulation
Well-defined problems consist of:

– the initial state
• in(Arad)

– a description of possible actions
can be done via a transition model describing
for each state possible actions and states to
which the action leads
• SUCCESSOR-FN(in(Arad)) = á go(Sibiu), in(Sibiu) ñ
• implicitly defines the state space (the set of all states reachable from the 

initial state by any sequence of actions)
• a path is a sequence of states connected by actions.

– the goal test
a function determining whether a given state is a goal state or not
• { in(Bucharest) }

– a path cost
a function that assigns a numeric cost to each path (reflects the 
performance measure)
• We assume that the cost of a path can be described as a sum of the costs of 

individual actions along the path.

A solution to a problem is an action sequence that leads from the 
initial state to a goal state.
An optimal solution is a solution that has the lowest path cost 
among all solutions.



Abstraction

In the problem formulation, we used
– abstraction of world states

• we ignored weather, traffic conditions, …
– abstraction of actions

• we ignored turning on the radio, looking out of the window, …

Abstraction is the process of removing detail from 
representation.
What is the appropriate level of abstraction?

– the abstraction is valid
• we can expand any abstract solution into a solution in the more 

detailed world
• we can find a way from any place in Arad to any place in Sibiu

– the abstraction is useful
• carrying out each of the actions in the solution is easier than the 

original problem
• the path from Arad to Sibiu can be executed by average driving agent

Intelligent agents would be completely swamped by the real world 
without using abstractions!



Toy problems

Toy problems are used to illustrate and to compare the 
solving techniques.
The vacuum world

states (location ´ dirt)
start, goal
actions (L, R, S)

The 8-puzzle
states (blocks’ positions)
start, goal
actions (L, R, U, D)

The 8-queens
place queens on a chessboard without attacks
– incremental formulation (adding queens)
– complete-state formulation (moving queens)



Real problems

That is what matters!
Route-finding problems

states (places)
start (here and now), goal (there, on-time)
successor
cost function (time, cost,…)

Touring problems
goal (to visit each place at least once)
states (current and visited places)
TSP (Travelling Salesman Problem), NP-hard

Product assembly problems
state (arm location ´ components)
goal (assembled product)
successor (movement of „hinges“)
cost (total assembly time)
protein design from a sequence of amino acids



Searching for solutions

Having formulated the problem, how do we solve it?
State space search

– start in the initial state
(root node)

– check whether the initial state is
a goal state

– if the state is not a goal state then
expand the state, it generates
a set of new states

– select a next state using
a search strategy



Node vs. state

State space is different from search tree –
world state is different from search node.

Node of the search tree consists of:
– a current state
– a link to its parent
– action leading from parent to the current state
– cost of path from the root g(n)
– depth (the number of steps from

the root)



Fringe/frontier

Fringe (frontier) is a set of nodes not yet expanded.

Nodes from the frontier are called leafs.
The algorithms can be described using the following 
operations over the fringe represented as a queue:

– MAKE-QUEUE(element,…)
– EMPTY?(queue)
– FIRST(queue)
– REMOVE-FIRST(queue)
– INSERT(element, queue)
– INSERT-ALL(elements, queue)



Tree search



Measuring the perfomance

We can evaluate an algorithm’s performance in four ways:
– completeness

• Does the algorithm guarantee to find a solution when there is one?
– optimality

• Does the strategy find the optimal solution?
– time complexity

• How long does it take to find a solution?
– space complexity

• How much memory is needed to perform search?
– Time and space complexity are always considered with respect to some 

measure of problem difficulty.
• branching factor b (maximum number of successors of any node) – useful for 

implicit representation of world states (the initial state and successors)
• depth d (the path length from the root to a shallowest goal node)
• path length m (the maximum length of any path in the state space)

• search cost (how much time and space we need to find a solution)
• total cost (combines the search cost and the path cost of the solution 

found)



Information in search

Today we will cover uninformed (blind) search
– no additional information about states beyond

that provided in the problem definition
– it can only generate successors and distinguish

a goal state from a non-goal state

Next lecture will cover informed (heuristic) 
search

– information to distinguish “more promising”
non-goal states from other states

– for example by estimating distance
to some goal state



Breadth-first search

All nodes are expanded at a given depth in 
the search tree before any nodes at the next level 
are expanded.

– the shallowest unexpanded 
node is chosen for expansion

– achieved by using a FIFO (first-in-
first-out) for the frontier

white nodes = frontier
grey nodes = expanded but stay in memory
green nodes = not yet visited



Breadth-first search (analysis)

It is a complete method (provided that the branching factor 
is finite).
The shallowest goal state is not necessarily the optimal one!

– BFS is optimal if the path cost is a non-decreasing function of the 
depth of the node

Time complexity (the number of visited nodes for the goal at 
depth d)

– 1+b+b2+b3+… +bd + b(bd-1) = O(bd+1)
Space complexity

– store every expanded node in the explored set
– O(bd+1)

The memory requirements are
a bigger problem than is the
execution time.

depth nodes time memory

2 1100 0.11 sec. 1 megabyte

4 111100 11 seconds 106 megabytes

6 107 19 minutes 10 gigabytes

8 109 31 hours 1 terabyte

10 1011 129 days 101 terabytes

12 1013 35 years 10 petabytes

14 1015 3523 years 1 exabyte

b = 10
10.000 nodes/sec.
1000 bytes/node



Uniform-cost search

Modifying BFS for finding an optimal solution.
Expand the node n with the lowest path cost g(n).
Beware of zero-cost steps – they can cause cycling!
Completeness (and optimality) can be guaranteed if 
the cost of each step is lower-bounded by some e.
Time (and space) complexity

– depends on the path cost rather than on the depth
– O(b1+ëC*/ εû), where C* is the cost of the optimal solution
– Could be much worse than for BFS,

because the algorithm prefers long paths
with “cheap” steps over shorter paths
with more expensive steps.

Also known as Dijkstra’s algorithm.



Depth-first search

Always expand the deepest node
until reaching the level, where the nodes 
have no successors and then the search 
“backs up” to the node at the shallower 
level
achieved by using a LIFO
(last-in-first-out) stack for the frontier
Frequently implemented in a recursive way.

white nodes = frontier
grey nodes = expanded and 

in memory
black nodes = expanded and 

removed
green nodes = not-yet visited



Depth-first search (analysis)

If the algorithm selects a wrong path, it may not find a goal 
during tree search (it is not complete) and of course it may 
not find optimum.
Time complexity

– O(bm), where m is the maximum depth
– it may happen that d << m, where d is the depth of the optimum

Space complexity
– needs to store only a single path from the root to a leaf node, 

along with the remaining unexpanded sibling nodes
– expanded node can be removed as soon as all its descendants 

have been fully explored
– O(bm), where m is the maximum visited depth
– Space complexity can be decreased via backtracking!

• generate one successor (instead of all) ® O(m) states
• modify the current state rather than copying it (we must be able to 

undo each modification when going back to generate the next 
successor ® O(1) states and O(m) actions



Depth-limited search

The failure of DFS in infinite state spaces can be 
alleviated by supplying DFS with a predetermined 
depth limit l.

– nodes at depth l are treated as if they have no successors
– terminates with a solution, with a failure, or with cut-off
– time complexity O(bl), space complexity O(bl)
– if l < d, then the algorithm is not complete (d is a depth of solution)
– if d << l, then the algorithm explores many useless nodes

How to decide the depth limit?
– using knowledge of the 

problem
– for example, for path finding 

for 20 cities, we can use the 
depth limit 19

– if we study the map carefully, 
we can discover that any city 
can be reached from any other 
city in at most 9 steps (the 
diameter of the state space)



Iterative deepening
How to make the depth limited search complete?
• by gradually increasing the depth limit
• combines the benefits of BFS and DFS

– completeness (when the branching factor is finite)
– optimal (when the path cost is a non-decreasing function of the depth 

of the node)
– low memory consumption O(bd)
– What about time complexity?

• d b1 + (d-1)b2 + … + 3bd-2 +2bd-1 + 1bd = O(bd)
• in fact, this is even better than BFS, which explores one more level

– Ex. (b= 10, d = 5): BFS = 1.111.100, DLS = 111.110, IDS = 123.450

Iterative deepening is the preferred uninformed search 
method when the search space is large and the depth of 
the solution is not known.



Iterative deepening (example)



Bidirectional search

We can run two simultaneous searches – one forward from 
the initial state and the other backward from the goal 
(hoping that the two searches meet in the middle).

Why?
– bd/2 + bd/2 << bd

– Ex. (b= 10, d = 6): BFS = 11.111.100, BiS = 22.200
How?

– Before expanding a node, verify that it is not present in the frontier 
of the other search tree.

– One of the frontiers must be kept in memory O(bd/2) so the 
intersection check can be done. With a hash table it will take 
constant time.

– If using breadth-first search, we obtain a complete algorithm 
(still the first solution found may not be optimal and some 
additional search is necessary to make sure there isn’t any 
shortcut).



Backward search?

Forward search explores the set of states, but what is 
explored during backward search and how?

– If the goal is a single state, we can go through the states (path Arad 
® Bucharest).

– If the goal is a set of goal states given explicitly (vacuum world), we 
can use a dummy state such that all the goal states are its 
predecessors or we can use a meta-state to describe a set of 
states.

– The worst case is when there is an abstract description of the 
goal state (8-queens).

Another problem is definition of predecessors of a state.
– The predecessors of n are all those states that have n as a 

successor.
– Again, the most complex case is when the state transition is defined 

using a general function.



Graph-search

So far we ignored one of typical problems of tree 
search – expansion of already visited states.

– sometimes, it is not a problem (a good problem formulation,
ex. 8-queens)

– sometimes, the search tree is much bigger than the search space

How to resolve it?
– remember already expanded 

states – closed states
– if the closed state is visited 

again, it is treated as it has 
no successors

d+1 states (a) give a search 
tree with 2d leafs (b)



Search with partial information

So far we assumed static, fully observable, discrete and 
deterministic environment.
What if some information is missing?

– no sensors (the agent does not know the current state)
• work with belief states – sets of real states – looking for a 

belief state containing only goal states
(conformant problems)

– non-deterministic actions
• plans with alternatives

(contingency problems)
– unknown actions

• solved by exploration
(exploration problems)

The belief state represents 
a set of real states (vacuum 
world).



Summary

b – the branching factor
d – the depth of the shallowest solution
C* – the cost of optimal solution
ε – the minimal step cost (the minimal action cost)
m – the maximum depth of the search tree
l – the depth limit
* complete if b is finite (BFS)

optimal if step costs are all identical

Criterion Breadth-First Uniform-cost Depth-First Depth-limited Iterative 
deepening

Bidirectional 
search

Complete? YES* YES* NO YES, 
if l ³ d

YES* YES*

Time bd+1 bC*/ ε bm bl bd bd/2

Space bd+1 bC*/ ε bm bl bd bd/2

Optimal? YES* YES* NO NO YES* YES*



© 2013 Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

bartak@ktiml.mff.cuni.cz


