

Constraint Programming

Roman Barták

Department of Theoretical Computer Science and Mathematical Logic

Constraint Modeling

- Exploiting the principles of constraint satisfaction, but **programming them ad-hoc** for a given problem.
 - flexibility (complete customisation to a given problem)
 - speed (for a given problem)
 - expensive in terms of initial development and maintenance
- Exploiting an existing constraint solver.
 - usually integrated to a host language as a library
 - contains core constraint satisfaction algorithms
 - the user can focus on problem modelling
 - It is hard to modify low-level implementation (domains,...)
 - sometimes possible to implement own constraints
 - frequently possible to implement own search strategies

A typical structure of constraint models:

Propose a constraint model for solving the **N-queens problem** (place N queens to a chessboard of size NxN such that there is no conflict).

Where is the problem?

- Different assignments describe the same solution!
- There are only two different solutions (very "similar" solutions).
- The search space is non-necessarily large.

N-queens

N-queens: a better model

Pre-assign queens to columns, use only variables for rows

Solutions (for 4 queens) in the form (X_i, Y_i)

[2,4,1,3] [3,1,4,2]

Model properties:

- fewer variables (= smaller state space)
- fewer constraints (= faster propagation)

Remove symmetrical solutions:

 $X_1 = < \text{ceiling}(N/2)$

a so-called **symmetry breaking constraint**

The problem:

Adam (36 kg), Boris (32 kg) and Cecil (16 kg) want to sit on a seesaw with the length 10 foots such that the minimal distances between them are more than 2 foots and the seesaw is balanced.

A constraint model:

A,B,C in -55	position
36*A+32*B+16*C = 0	equilibrium state
A-B >2, A-C >2, B-C >2	minimal distances

Seesaw problem: a different perspective

A,B,C in -55, A =< 0,	
36*A+32*B+16*C = 0,	
abs(A-B)>2,	A in -40
abs(A-C)>2,	B in -15
abs (B-C) >2	C in -55

• A set of similar constraints typically indicates a structured sub-problem that can be represented using a **global constraint.**

Assignment problem

The problem:

There are 4 workers and 4 products and a table describing the efficiency of producing the product by a given worker. The task is assign workers to products (one to one) in such a way that the total efficiency is at least 19.

	P1	P2	P3	P4
W1	7	1	3	4
W2	8	2	5	1
W 3	4	3	7	2
W4	3	1	6	3

A constraint model:

W1,W2,W3,W4 in 14	a product per worker
<pre>all_different([W1,W2,W3,W4])</pre>	different products
$T_{1,W1}+T_{2,W2}+T_{3,W3}+T_{4,W4} \ge 19$	total efficiency

Assignment problem - a dual model

Why do we assign products to workers?

Cannot we do it in an opposite way, that is, to **assign a worker to a product?**

Of course, we can **swap the role of values and variables!**

• This new model is called a **dual model.**

• In this particular case, the dual model propagates earlier (thus it is assumed to be better).

Assignment problem - composing models

We can combine both primal and dual model in a single model to get better domain pruning.

Golomb ruler

- A ruler with M marks such that distances between any two marks are different.
- The **shortest ruler** is the optimal ruler.

- **Hard** for $M \ge 16$, no exact algorithm for $M \ge 24$!
- Applied in **radioastronomy**.

🗿 Golomb ruler table - Microsoft Internet Explorer							
Soubor	Úpravy	Zobraz	it Ob	libené I	Vástroje	Nápověda 🧗	
20	ĕt - 🌀) -			O Hle	dat 📌 Oblibené 📢 Média 🚱 😞 - 📐 👿 - 👋	
Adresa							
Good		nh rule	earchil	on.com/pe	opie/s/s	Ab Prohledat web O Hedei server & O + &	
0008	AC - JOUIUI	ibitule					
			р			1	
. <u>.</u>			Pe	erso	ona	al communication	
© 1996	BM Corpor	ation	*****	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*****		
This v	web page	e contair	ns a ta	ble givin	ig the l	engths of the shortest known Golomb rulers for up to	
150 r	narks. Ti	he value	s for 2	23 mark	s or les	s are known to be optimal. For the actual rulers see	
	known	optimal	rulers				
•	best rul	ers fron	1 proje	ective pl	ane co	nstruction	
•	best rul	ers fron	affin	e plane o	constru	ction	
		Table	oflar	the of a	hortest	known Golomb rulers	
		Table	oriens	guis or si	nortest	known Golomb fuers	
mari	ks lengt	h found	by	proved	by	comments	
1	1					trivial	
2	3					tricial	
4	6					tricial	
5	11	1952	WB	1967?	RB	hand search	
6	17	1952	WB	1967?	RB	hand search	
7	25	1952	WB	1967?	RB	hand search	
8	34	1952	WB	1972	WM	hand search	
9	44	1972	WM	1972	WM	computer search	
10	55	1967	RB	1972	WM	projective plane construction p=9	
11	72	1967	<u>RB</u>	1972	WM	projective plane construction p=11	
12	85	1967	<u>RB</u>	1979	<u>JR1</u>	projective plane construction p=11	
13	106	1981	<u>JR2</u>	1981	<u>JR2</u>	computer search	
14	127	1967	<u>RB</u>	1985	<u>JS1</u>	projective plane construction p=13	
15	151	1985	<u>JS1</u>	1985	<u>JS1</u>	computer search	
16	177	1986	<u>JS1</u>	1986	<u>JS1</u>	computer search	
17	199	1984?	? <u>AH</u>	1993	<u>OS</u>	affine plane construction p=17	
18	216	1967	<u>RB</u>	1993	<u>os</u>	projective plane construction p=17	
19	246	1967	<u>RB</u>	1994	DRM	projective plane construction p=19	
20	283	1967	<u>KB</u>	1997?	<u>GV</u>	projective plane construction p=19	
21	333	1967	<u>KB</u>	1998	GV	projective plane construction $p=23$	
22	356	1984?	AH DD	1999	GV	affine plane construction $p=23$	
25	372	1967	<u>KB</u>	1999	<u>u</u>	projective plane construction $p=23$	
24	425	190/	<u>KB</u>			projective plane construction p=25	
	-						

Golomb ruler – a model

A base model:

Variables X₁, ..., X_M with the domain 0..M*M $X_1 = 0$ ruler start $X_1 < X_2 < ... < X_M$ no permutations of variables $\forall i < j D_{i,j} = X_j - X_i$ difference variables all_different({D_{1,2}, D_{1,3}, ... D_{1,M}, D_{2,3}, ... D_{M,M-1}})

Model extensions:

 $D_{1,2} < D_{M-1,M}$ symmetry breaking

better bounds (implied constraints) for D_{i,i}

$$\begin{array}{ll} D_{i,j} = D_{i,i+1} + D_{i+1,i+2} + \ldots + D_{j-1,j} \\ \text{so } \mathbf{D}_{i,j} \geq \Sigma_{j-i} = (j-i)^*(j-i+1)/2 & \textit{lower bound} \\ X_{M} = X_{M} - X_{1} = D_{1,M} = D_{1,2} + D_{2,3} + \ldots D_{i-1,i} + D_{j,j+1} + \ldots + D_{M-1,M} \\ D_{i,j} = X_{M} - (D_{1,2} + \ldots D_{i-1,i} + D_{j,j+1} + \ldots + D_{M-1,M}) \\ \text{so } \mathbf{D}_{i,j} \leq \mathbf{X}_{M} - (\mathbf{M}-1-j+i)^*(\mathbf{M}-j+i)/2 & \textit{upper bound} \end{array}$$

Golomb ruler - some results

• What is the effect of different constraint models?

size	base model	base model + symmetry	base model + symmetry + implied constraints
7	220	80	30
8	1 462	611	190
9	13 690	5 438	1 001
10	120 363	49 971	7 011
11	2 480 216	985 237	170 495

time in milliseconds on Mobile Pentium 4-M 1.70 GHz, 768 MB RAM

What is the effect of different search strategies?

size		fail first		leftmost first			
	enum	step	bisect	enum	step	bisect	
7	40	60	40	30	30	30	
8	390	370	350	220	190	200	
9	2 664	2 384	2 113	1 182	1 001	921	
10	20 870	17 545	14 982	8 782	7 011	6 430	
11	1 004 515	906 323	779 851	209 251	170 495	159 559	

time in milliseconds on Mobile Pentium 4-M 1.70 GHz, 768 MB RAM

Constraint satisfaction is a technology for **declarative** solving combinatorial (optimization) problems.

Constraint modeling

 describing problems as constraint satisfaction problems (variables, domains, constraints)

Constraint satisfaction

- local search techniques
- combination of depth-first search with inference (constraint propagation/consistency techniques)
- ad-hoc algorithms encoded in global constraints
- soft constraints to express preferences

© 2020 Roman Barták Department of Theoretical Computer Science and Mathematical Logic bartak@ktiml.mff.cuni.cz