
Planning'&'Scheduling!
Roman Barták

Department of Theoretical Computer Science and Mathematical Logic

Planning Problem Formalization

Today!program!

•  Problem'Formalisa5on'for'Classical'Planning!
–  conceptual!model!

•  state!transi0ons!
•  goals!
•  ini0al!assump0ons!

–  set!representa0on!(proposi0onal!logic)!
•  states!and!ac0ons!

–  classical!representa0on!(first5order!logic)!
•  operators!
•  planning!domain!and!planning!problem!

–  some!extensions!

Conceptual!model!

Planning deals with selection and organization
of actions that are changing world states.

System Σ modelling states and transitions:
–  set of states S (recursively enumerable)
–  set of actions A (recursively enumerable)

•  actions are controlled by the planner!
•  no-op

–  set of events E (recursively enumerable)
•  events are out of control of the planner!
•  neutral event ε

–  transition function γ: S×A×E → P(S)
•  actions and events are sometimes applied separately

 γ: S×(A∪E) → P(S)

Goals!in!planning!

•  A planning task is to find which actions are
applied to world states to reach some goal from
a given initial state.

What is a goal?
–  goal state or a set of of goal states
–  satisfaction of some constraint over a sequence

of visited states
•  for example, some states must be excluded or some states

must be visited
–  optimisation of some objective function over a

sequence of visited states (actions)
•  for example, maximal cost or a sum of costs

Example!

Σ = (S,A,E,γ)
– S = {s0, …, s5}
– E = {} resp. {ε}
– A = {move1,

move2,
put, take, load,
unload}

– γ: see figure

•  init: s0

•  goal: s5

location 1 location 2

s0

location 1 location 2

s1

take

put

move1

put

take

move1

move1 move2

load unload

move2

move2

s4

location 1 location 2

s5

location 1 location 2

location 1 location 2

s3

location 1 location 2

s2

How!does!it!work?!

•  A!planner'generates!
plans!

•  A!controller'takes!care!
about!plan!execu0on!
–  for!each!state!it!selects!an!
ac0on!to!execute!

–  observa0ons!(sensor!
input)!are!translated!to!
world!state!

Dynamic'planning'involves're=planning'when'the'state'is'
not'as'expected.''

Some!assump<ons!

•  the system is finite
•  the system is fully observable

–  We know completely the current state.
•  the system is deterministic

–  ∀s∈S ∀u∈(A∪E): |γ(s,u)|≤1

•  the system is static
–  There are no external events.

•  the goals are restricted
–  The aim is to reach one of the goal states.

•  the plans are sequential
–  A plan consists of a (linearly ordered) sequence of actions.

•  time is implicit
–  Actions are instantaneous (no duration is assumed)).

•  planning is done offline
–  State of the world does not change during planning.

Classical!planning!

•  We will work with a deterministic, static, finite,
and fully observable state-transition system with
restricted goals and implicit time
Σ = (S,A,γ).

Planning problem P = (Σ,s0,g):
–  s0 is the initial state
–  g describes the goal states

A solution to the planning problem P is a
sequence of actions 〈a1,a2,…,ak〉 with a
corresponding sequence of states 〈s0,s1,…,sk〉
such that si = γ(si-1,ai) and sk satisfies g

! Classical planning (STRIPS planning) "

Simplifica<on?!

Planning in the restricted model reduces to “path
finding” in the graph defined by states and state
transitions.

Is it really so simple?
5 locations, 3 piles per location, 100 containers,

3 robots
#10277 states
 This is 10190 times more than the largest
estimate of the number of particles in the
whole universe!

This!course!

•  How to represent states and actions
without enumerating the sets S and A?
–  recall 10277 states with respect to the number of

particles in the universe

•  How to efficiently solve planning
problems?
– How to find a path in a graph with 10277 nodes?

Set!representa<on!

Each'state'is!described!using!a!set'of'proposi5ons'
that!hold!at!that!state.!
example:!{onground,!at2}!

Each!ac5on!is!a!syntac0c!expression!describing:!
•  which!proposi0ons!must!hold!in!a!state!so!the!
ac0on!is!applicable!to!that!state!
example:!take:!{onground}!

•  which!proposi0ons!are!added!and!deleted!from!
the!state!to!make!a!new!state!
example:!
!!!!!!take: !{onground}D,!

!{holding}+! take
location 1 location 2

s0

location 1 location 2

s1

Set!representa<on:!a!planning!domain!

Let L= {p1, …, pn} be a finite set of propositional
symbols (language).

A planning domain Σ over L is a triple (S,A,γ):
–  S ⊆ P(L), i.e. state s is a subset of L describing which

propositions hold in that state
•  if p ∈ s, then p holds in s
•  if p ∉ s, then p does not hold in s

–  action a ∈ A is a triple of subsets of L
a = (precond(a), effects-(a), effects+(a))

•  effects-(a) ∩ effects+(a) = ∅
•  action a is applicable to state s iff precond(a) ⊆ s

–  transition function γ:
•  γ(s,a) = (s – effects-(a)) ∪ effects+(a), if a is applicable to s

Set!representa<on:!a!planning!problem

Planning problem P is a triple (Σ,s0,g):
–  Σ = (S,A,γ) is a planning domain over L
–  s0 is an initial state, s0 ∈ S
–  g ⊆ L is a set of goal propositions

•  Sg = {s∈S | g ⊆ s} is a set of goal states

Plan π is a sequence of actions 〈a1,a2,…,ak〉
–  the length of plan π is k = |π|
–  a state obtained by the plan π (a transitive closure of γ)

•  γ(s,π) = s, if k=0 (plan π is empty)
•  γ(s,π) = γ(γ(s,a1), 〈a2,…,ak〉), if k>0 and a1 is applicable to s
•  γ(s,π) = undefined, otherwise

Plan π is a solution plan for P iff g ⊆ γ(s0,π).
–  redundant plan contains a subsequence of actions that also

solves P
–  minimal plan: there is no shorter solution plan for P

Set!representa<on:!example

L = {onground, onrobot,
holding, at1, at2}

s0 = {onground, at2}
g = {onrobot}

load = (

{holding,at1},
{holding},
{onrobot})

〈take,move1,load,move2〉

is a plan,
but not a minimal plan

location 1 location 2

location 1 location 2

s1

s3

s4

take

put

location 1 location 2

location 1 location 2

s0

s2

s5

move1

put

take

move1

move1 move2

load unload

move2

move2

location 1 location 2 location 1 location 2

Direct successors of state s:
Γ(s) = {γ(s,a) | a ∈ A is applicable to s}

Reachable states:
 Γ∞(s) = Γ(s) ∪ Γ2(s) ∪ …

Planning problem has a solution iff Sg∩Γ∞(s0)≠∅.

Action a is relevant for goal g if and only if:
g ∩ effects+(a) ≠ ∅
g ∩ effects-(a) = ∅

Regression set for a goal g for (relevant) action a:
γ-1(g,a) = (g - effects+(a)) ∪ precond(a)
Γ-1(g) = {γ-1(g,a) | a∈A is relevant for g}
Γ∞-1(g) = Γ-1(g) ∪ Γ-2(g) ∪ …

Planning problem has a solution iff s0 is a superset of
some element in Γ∞-1(g).

Set!representa<on:!reachability!

Set!representa<on:!proper<es

•  Simplicity'
–  easy!to!read!
How!many!states!for!n!containers?!

•  Computa5ons'
–  the!transi0on!func0on!is!easy!to!model/compute!using!set!
opera0ons!

–  if!precond(a)!⊆!s,!then!
γ(s,a)!=!(s!–!effects5(a))!∪!effects+(a),!

•  Expressivity'
–  some!sets!of!proposi0ons!do!not!describe!real!states!

•  {holding,!onrobot,!at2}!
–  for!many!domains,!the!set!representa0on!is!s0ll!too!large!
and!not!prac0cal!

8.n.n! states

{nothing-on-c3, c3-on-c1,c1-on-pile1, nothing-on-c2, c2-on-pile2,
crane-empty, robot-at-loc2}

Classical!representa<on!

•  Classical'representa5on'generalize!the!set!
representa0on!by!exploi0ng!first=order'logic.!
– State'is!a!set!of!logical!atoms!that!are!true!in!a!given!
state.!

– Ac5on'is!an!instance!of!planning!operator!that!
changes!truth!value!of!some!atoms.!

More'precisely:!
•  L!(language)!is!a!finite!set!of!predicate!symbols!and!
constants!(there!are!no!func0on!symbols!).!

•  Atom'is!a!predicate!symbol!with!arguments.!
example:!on(c3,c1)!

•  We!can!use!variables!in!the!operators.!
example:!on(x,y)!

Classical!representa<on:!states

State'is'a'set'of'instan5ated'atoms'(no!variables).!There!
is!a!finite!number!of!states!!

–  The!truth!value!of!some!atoms!
is!changing!in!states:!

•  fluents!
•  example:!at(r1,loc2)!

–  The!truth!value!of!some!state!
is!the!same!in!all!states!

•  rigid'atoms!
•  example:!
adjacent(loc1,loc2)!

We!will!use!a!classical!closed'world'assump5on.!
An!atom!that!is!not!included!in!the!state!does!not!hold!at!that!
state!!

Classical!representa<on:!planning!operators

operator!o!is!a!triple!(name(o),!precond(o),!effects(o))!
–  name(o):''name'of'the'operator'in!the!form!n(x1,…,xk)!

•  n:!a!symbol!of!the!operator!(a!unique!name!for!each!operator)!
•  x1,…,xk:!symbols!for!variables!(operator!parameters)!

–  Must!contain!all!variables!appearing!in!the!operator!defini0on!!

–  precond(o):'
•  literals!that!must!hold!in!the!state!so!the!operator!is!applicable!on!it!

–  effects(o):'
•  literals!that!will!become!true!aVer!operator!applica0on!(only!fluents!
can!be!there!)!

Classical!representa<on:!ac<ons

An action is a fully instantiated operator
– substitute constants to variables

action

operator

Classical!representa<on:!ac<on!usage

Notation:
–  S+ = {positive atoms in S}
–  S– = {atoms, whose negation is in S}

Action a is applicable to state s if any only
precond+(a) ⊆ s ∧ precond–(a) ∩ s = ∅

The result of application of action a to s is
γ(s,a) = (s – effects–(a)) ∪ effects+(a)

Classical!representa<on:!a!planning!domain

Let L be a language and O be a set of operators.

Planning domain Σ over language L with operators O
is a triple (S,A,γ):
–  states S ⊆ P({all instantiated atoms from L})
–  actions A = {all instantiated operators from O over L}

•  action a is applicable to state s if
precond+(a) ⊆ s ∧ precond–(a) ∩ s = ∅

–  transition function γ:
•  γ(s,a) = (s – effects-(a)) ∪ effects+(a), if a is applicable on s
•  S is closed with respect to γ (if s ∈ S, then for every action a

applicable to s it holds γ(s,a) ∈ S)

Classical!representa<on:!a!planning!problem

•  Planning'problem'P!is!a!triple!(Σ,s0,g):!
– Σ!=!(S,A,γ)!is!a!planning!domain!
– s0!is!an!ini0al!state,!s0!∈!S!
– g!is!a!set!of!instan0ated!literals!

•  state!s!sa0sfies!the!goal!condi0on!g!if!and!only!if!
g+!⊆!s!!∧!!g–!∩!s!=!∅!

•  Sg!=!{s!∈!S!|!s!sa0sfies!g}!–!a!set!of!goal!states!

•  Usually!the!planning!problem!is!given!by!a!triple!
(O,s0,g).!
– O!defines!the!the!operators!and!predicates!used!
– s0!provides!the!par0cular!constants!(objects)!

Plan π is a sequence of actions 〈a1,a2,…,ak〉.
Plan π is a solution of P if and only if γ(s0,π) satisfies g.

–  Planning problem has a solutions iff Sg ∩ Γ∞(s0) ≠ ∅.
–  Planning problem has a solution iff s0 is a superset of some

element from Γ∞-1(g) (but γ-1 is defined a bit differently).

Action a is relevant for a goal g if and only if :
action contributes to g: g ∩ effects(a) ≠ ∅
action effects are not in conflict with g:
–  g- ∩ effects+(a) = ∅
–  g+ ∩ effects-(a) = ∅

Regression set for a goal g for a (relevant) action a:
γ-1(g,a) = (g - effects(a)) ∪ precond(a)

Classical!representa<ons:!plans!

Classical!representa<on:!an!example!plan

s1= g = {loaded(r1,c3), at(r1,loc2)}

〈move(r1,loc2,loc1),
take(crane1,loc1,c3,c1,p1),
load(crane1,loc1,c3,r1),
move(r1,loc1,loc2)〉

〈take(crane1,loc1,c3,c1,p1),
move(r1,loc2,loc1),
load(crane1,loc1,c3,r1),
move(r1,loc1,loc2)〉

our goal

•  Syntactical extensions
–  typed variables (each constant from a language has a type)

•  Example: type robot: rob1, rob2, rob3
–  existential quantification of goals (closed formula!)

•  Example: ∃x,y (on(x,c1) ∧ on(y,c2))

•  Conditional operators
–  one operator encapsulates several “mini” operators, each with own

preconditions and effects
–  all mini operators with satisfied preconditions are applied together
–  Example: Switch on/off can be done using the same operator

•  Disjunctive preconditions
–  precondition can be described using any logical formula
–  Example: a robot R goes from A to B either if A and B are connected

via a road or R is a four-wheel-drive car

Classical!representa<on:!extensions!

•  Attached procedures (to operators)
–  they are used to verify more complex preconditions (for example

numerical preconditions)
–  Example: weight(c) ≤ maxweight(r)

•  Axioms
–  for automated inference of some facts
–  Example: ∀ l,l‘ (adjacent(l,l‘) ⇔ adjacent(l‘,l))
–  This must be done carefully for fluents:

•  ∀k (¬∃x holding(k,x) ⇒ empty(k))
•  ∀k (∃x holding(k,x) ⇒ ¬empty(k))
Fluents can be split into two sets:

–  Primal atoms, that can be used both in preconditions and
effects (for example, holding)

–  Secondary atoms, that can be used in preconditions only;
cannot be used in effects (for example, empty)

Classical!representa<on:!extensions!

Comparison!of!representa<ons!

•  Expressive'power'of!both!representa0ons!is!iden5cal.!
•  However,!the!transla0on!from!the!classical!
representa0on!to!the!set!representa0on!brings!
exponen5al'increase'of'size.!

classical
representation

set
representation

trivial

make all possible
instances

{on(c1,pallet), on(c1,r1), on(c1,c2), …, at(r1,l1), …}
…

{on-c1-pallet, on-c1-r1, on-c1-c2, …, at-r1-l1, …}
…

states

take-crane1-loc1-c3-c1-p1
 precond: belong-crane1-loc1, attached-p1-loc1,

 empty-crane1, top-c3-p1, on-c3-c1
 delete: empty-crane1, in-c3-p1, top-c3-p1, on-c3-p1
 add: holding-crane1-c3, top-c1-p1

actions

Blockworld:!an!example!problem!

The'blocks'world'
–  infinitely!large!table!with!a!finite!set!of!blocks!
–  the!exact!loca0on!of!block!on!the!table!is!irrelevant!
–  a!block!can!be!on!the!table!or!on!another!(single)!block!
–  the!planning!domain!deals!with!moving!blocks!by!a!
computer!hand!that!can!hold!at!most!one!block!

situa<on!example!

c"

a"
b"c"

a" b" e"

d"

© 2014 Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

bartak@ktiml.mff.cuni.cz

