Planning & Scheduling

Roman Bartak

Department of Theoretical Computer Science and Mathematical Logic

Planning Problem Formalization

* Problem Formalisation for Classical Planning
— conceptual model

* state transitions
* goals
* initial assumptions
— set representation (propositional logic)
* states and actions
— classical representation (first-order logic)
® operators

* planning domain and planning problem

— some extensions

Planning deals with selection and organization
of actions that are changing world states.

System X modelling states and transitions:
— set of states S (recursively enumerable)

— set of actions A (recursively enumerable)
» actions are controlled by the planner!
* No-op

— set of events E (recursively enumerable)
+ events are out of control of the planner!
* neutral event ¢

— transition function y: SxAxE — P(S)

+ actions and events are sometimes applied separately
v: Sx(AUE) — P(S)

A planning task is to find which actions are
applied to world states to reach some goal from
a given initial state.

What is a goal?
— goal state or a set of of goal states
— satisfaction of some constraint over a sequence

of visited states

- for example, some states must be excluded or some states
must be visited

— optimisation of some objective function over a
sequence of visited states (actions)
« for example, maximal cost or a sum of costs

3

U

a7

e

location 1 location 2

put

take

=

location 1 location 2

move2 move1

A

move2 move

ey
3

location 1 location 2

put

take

location 1 location 2

unload load

=L

location 1 location 2

move2|

move1

L

-,

location 1 location 2

Initial state

= (SAEy)
—S ={sy, ...y S5}
—E = {} resp. {¢}

— A = {movel,
move2,
put, take, load,

unload}
—v: see figure

* init: s,
* goal: s:

» A planner generates

l Description of £

Planner

Objectives 3

Execution status

Y

Plans

Controll

er

A
Observations

\

Actions

System X

T Events

plans

* A controller takes care

about plan execution

— for each state it selects an
action to execute

— observations (sensor
input) are translated to
world state

Dynamic planning involves re-planning when the state is
not as expected.

« the system is finite

« the system is fully observable

— We know completely the current state.
» the system is deterministic

— Vs&S Yue(AUE): |y(s,u)|=1
» the system is static

— There are no external events.

» the goals are restricted
— The aim is to reach one of the goal states.

« the plans are sequential
— A plan consists of a (linearly ordered) sequence of actions.

« time is implicit
— Actions are instantaneous (no duration is assumed)).

« planning is done offline
— State of the world does not change during planning.

« We will work with a deterministic, static, finite,
and fully observable state-transition system with
restricted goals and implicit time
2 = (SAY)-

Planning problem P = (Z,s,,9):
— S, is the initial state
— g describes the goal states

A solution to the planning problem P is a
sequence of actions (a,,a,,...,a,) with a
corresponding sequence of states (s,,Sy,..,Sy)
such that s, = y(s,.;,@;) and s, satisfies g

< Classical planning (STRIPS planning) =

Planning in the restricted model reduces to “path
finding” in the graph defined by states and state
transitions.

Is it really so simple?

5 locations, 3 piles per location, 100 containers,
3 robots

4, 10277 states

This is 101%0 times more than the largest
estimate of the number of particles in the

whole universe! ﬁ@
'

pl amy

loc2

 How to represent states and actions
without enumerating the sets S and A?

— recall 10%77 states with respect to the number of
particles in the universe

- How to efficiently solve planning
problems?

— How to find a path in a graph with 10277 nodes?

Each state is described using a set of propositions

that hold at that state.
example: {onground, at2}

Each action is a syntactic expression describing:

e which propositions must hold in a state so the
action is applicable to that state

example: take: {onground}

* which propositions are added and deleted from
the state to make a new state

example:
take:

{onground},
{holding}*

Sl

location 1 location 2

take

.

location 1 location 2

Let L= {p;, ..., P} be a finite set of propositional
symbols (language).
A planning domain X over L is a triple (S,A,y):

— SCP(L), i.e. state s is a subset of L describing which
propositions hold in that state

- ifpes,thenpholdsins

« ifpé&s, then p does not hold in s
— action a € A is a triple of subsets of L

a = (precond(a), effects(a), effects*(a))
« effects(a) N effectst(a) =

- action a is applicable to state s iff precond(a) C s

— transition function y:

» y(s,a) = (s — effects(a)) U effects*(a), if a is applicable to s

Planning problem P is a triple (Z,s,,9):
— 2 = (5,A)y) is a planning domain over L
— S is an initial state, s, € S
— g C Lis a set of goal propositions
« Sy ={seS | g C s} is a set of goal states
Plan x is a sequence of actions (a,,a,,...,a,)

— the length of plan ntis k = |«
— a state obtained by the plan x (a transitive closure of v)

* y(s,m) = s, if k=0 (plan & is empty)
* v(s,m) = y(v(s,ay), (ay-..,ay), if k>0 and a, is applicable to s

* v(s,m) = undefined, otherwise

Plan & is a solution plan for P iff g C y(s,n).
— redundant plan contains a subsequence of actions that also

solves P
— minimal plan: there is no shorter solution plan for P

S

L = {onground, onrobot,
holding, atl1, at2}

-'F s, = {onground, at2}

!

&
= Q.| V"
location 1 location 2 location 1 location 2
movezk move1 moveZk move g = {OnrObOt}
: 53 : 52
put |OaC| = (
- {holding,at1},
ﬁ. - g r {holding},
ocation 1 location ocation 1 location {Onrobot})

Y
unload load

A ove? h (take,movel,load,move2)
- is a plan,
| = over - but not a minimal plan

L

move1

location 1 location 2

location 1 location 2

Direct successors of state s:

I'(s) = {y(s,a) | a € A is applicable to s}
Reachable states:

r.(s) =T(s) UT?%(s) U ..
Planning problem has a solution iff S;NI',(s,)=Z.

Action a is relevant for goal g if and only if:
g N effects*(a) = &
g N effects(a) = &
Regression set for a goal g for (relevant) action a:
v1(g,a) = (g - effects*(a)) U precond(a)
I"'1(g) = {yX(g,a) | acA is relevant for g}
r.2(g) =TH(g)UIr4g)u ..
Planning problem has a solution iff s, is a superset of
some element in I'_"1(g).

* Simplicity

— easv to read cranel — 8.n.n! states

Y . =] (o

How many states for n containers? T S

loc1 loc2

- {nothing-on-c3, c3-on-c1,cl-on-pilel, nothing-on-c2, c2-on-pile2,
i computatlons wine . cra:e-e?npty, robot-at-lrocz}

— the transition function is easy to model/compute using set

operations

— if precond(a) C s, then
v(s,a) = (s — effects’(a)) U effects*(a),

* Expressivity
— some sets of propositions do not describe real states
* {holding, onrobot, at2}

— for many domains, the set representation is still too large
and not practical

* Classical representation generalize the set
representation by exploiting first-order logic.

— State is a set of logical atoms that are true in a given
state.

— Action is an instance of planning operator that
changes truth value of some atoms.

More precisely:

* L (language) is a finite set of predicate symbols and
constants (there are no function symbols!).

* Atom is a predicate symbol with arguments.
example: on(c3,c1)

* We can use variables in the operators.
example: on(x,y)

State is a set of instantiated atoms (no variables). There
is a finite number of states!

— The truth value of some atoms
is changing in states:

cranel — * fluents
= || 5 = ,
. .
a s P ’ ‘ example: at(r1,loc2)
Pl CEE ST
— The truth value of some state
locl loc2 . .
is the same in all states
{attached(p1,locl), in(cl,pl), in(c3,pl), ..
top(c3,pl), on(c3,cl), on(cl,pallet), attached(p2,locl), in(c2,p2), top(c2,p2), ° rlgld atoms
on(c2,pallet), belong(cranel,locl), empty(cranel), adjacent(locl,loc2), adja-
cent(loc2,locl), at(rl,loc2), occupied(loc2), unloaded(rl)}. ® examp/e:

adjacent(loc1,loc2)

We will use a classical closed world assumption.
An atom that is not included in the state does not hold at that
state!

operator o is a triple (name(o), precond(o), effects(o))

— name(o): name of the operator in the form n(x,...,x,)
* n:asymbol of the operator (a unique name for each operator)
* Xy,..,X,: symbols for variables (operator parameters)
— Must contain all variables appearing in the operator definition!
— precond(o):
* literals that must hold in the state so the operator is applicable on it
— effects(o):

* literals that will become true after operator application (only fluents
can be there!)

take(k,l, c,d,p)
;; crane k at location [takes ¢ off of d in pile p
precond: belong(k,1), attached(p, 1), empty(k), top(c, p),on(c,d)
effects: holding(k, ¢), ~empty(k), ~in(c, p), 7 top(c, p), —on(e, d), top(d, p)

An action is a fully instantiated operator

— substitute constants to variables Tﬂ
e
s
take(k,l,c,d,p) - ' e
;; crane k at location [takes ¢ off of d in pile p operator

precond: belong(k, 1), attached(p,1),empty(k),top(c, p),on(c,d)
effects: holding(k, ¢), mempty(k), —in(c, p), = top(c, p), ~on(c, d), top(d, p)

take(cranel,locl,c3,c1,pl) action
;; crane cranel at location locl takes c3 off cl in pile pl
precond: belong(cranel,locl), attached(pl,locl),
empty(cranel), top(c3,pl), on(c3,cl)
effects: holding(cranel,c3), —empty(cranel), —in(c3,pl),
—top(c3,pl), —on(c3,cl), top(cl,pl)

Notation:
— S+ = {positive atoms in S}
— S~ = {atoms, whose negation is in S}

Action a is applicable to state s if any only
precondt(@a) Cs A precond(@) Ns =

The result of application of action atosis
v(s,a) = (s — effects~(a)) U effects*(a)

take(cranel,locl,c3,c1,pl)
;; crane cranel at location locl takes c3 off cl in pile pl
precond: belong(cranel,locl), attached(pl,locl),
empty(cranel), top(c3,pl), on(c3,cl)

= ! ’—;
effects: holding(cranel,c3), —empty(cranel), —in(c3,pl), P O <O
—top(c3,pl), —on(c3,cl), top(cl,pl) loc1 loc2
1
(s 1)
a1 7
p1 O O

Let L be a language and O be a set of operators.

Planning domain X over language L with operators O
is a triple (S,A,y):
— states S C P({all instantiated atoms from L})

— actions A = {all instantiated operators from O over L}
« action a is applicable to state s if
precond*(@) Cs A precond-(@)Ns=J
— transition function y:
* v(s,a) = (s — effects'(a)) U effects*(a), if a is applicable on s

» Sis closed with respect to y (if s € S, then for every action a
applicable to s it holds y(s,a) € S)

* Planning problem P is a triple (X,s,,8):
— 2 =(S,A)y) is a planning domain
— Sy is an initial state, s, €S
— g is a set of instantiated literals

* state s satisfies the goal condition g if and only if
gCs A gNs=
* S, ={s €S | ssatisfies g} — a set of goal states

* Usually the planning problem is given by a triple

(OISOIg)'
— O defines the the operators and predicates used
— s, provides the particular constants (objects)

Plan r is a sequence of actions (a,,a,,...,ay)-

Plan =t is a solution of P if and only if y(s,,) satisfies g.
— Planning problem has a solutions iff S; N T',(s,) = &.

— Planning problem has a solution iff s, is a superset of some
element from I',"1(g) (but y! is defined a bit differently).

Action a is relevant for a goal g if and only if :
action contributes to g: g N effects(a) = &
action effects are not in conflict with g:
— g N effects*(a) = I
— g+t N effects'(a) = O

Regression set for a goal g for a (relevant) action a:
v'1(g,a) = (g - effects(a)) U precond(a)

cranel

(= 1,
c2
c3 p2 vy .r-
a1, (Crr (A=
pl oy © OO r e O
our goal
locl loc2 loc2
$,= {attached(p1,locl), in(cl,pl), in(c3,pl), g = {loaded(r1,c3), at(r1,loc2)}

top(c3,p1), on(c3,cl), on(cl,pallet), attached(p2,locl), in(c2,p2), top(c2,p2),
on(c2,pallet), belong(cranel,locl), empty(cranel), adjacent(locl,loc2), adja-

cent(loc2,locl), at(rl,loc2), occupied(loc2), unloaded r1)} <m0ve(r1,|OC2,|OC1),

R take(cranel,loc1,c3,c1,pl),
load(cranel,locl,c3,rl),

move(rl,locl,loc2))

(take(cranel,locl,c3,c1,pl),

move(rl,loc2,locl),
load(cranel,locl,c3,rl),

move(rl,locl,loc2)) canel
7 ‘—’
il b il =
pl O 00)
locl loc2

« Syntactical extensions

— typed variables (each constant from a language has a type)
« Example: type robot: rob1, rob2, rob3

— existential quantification of goals (closed formula!)
» Example: 3x,y (on(x,c1) A on(y,c2))

« Conditional operators

— one operator encapsulates several “mini” operators, each with own
preconditions and effects

— all mini operators with satisfied preconditions are applied together
— Example: Switch on/off can be done using the same operator

» Disjunctive preconditions
— precondition can be described using any logical formula

— Example: a robot R goes from A to B either if A and B are connected
via a road or R is a four-wheel-drive car

« Attached procedures (to operators)

— they are used to verify more complex preconditions (for example
numerical preconditions)

— Example: weight(c) = maxweight(r)

« Axioms
— for automated inference of some facts
— Example: V |I* (adjacent(l,l’) < adjacent(l’]l))
— This must be done carefully for fluents:
* Vk (-3x holding(k,x) = empty(k))
« Yk (3x holding(k,x) = —empty(k))
Fluents can be split into two sets:

— Primal atoms, that can be used both in preconditions and
effects (for example, holding)

— Secondary atoms, that can be used in preconditions only;
cannot be used in effects (for example, empty)

* Expressive power of both representations is identical.

 However, the translation from the classical
representation to the set representation brings
exponential increase of size.

trivial
set classical
representation representation
— - actions
make a" pOSSIbIe take(cranel,locl,c3,c1,pl)

instances ;; crane cranel at location locl takes c3 off cl in pile pl

states precond: belong(cranel,locl), attached(pl,locl),
empty(cranel), top(c3,pl), on(c3,cl)

{on(c1,pallet), on(c1,r1), on(cl,c2), ..., at(rL,11), ..} effects: holding(cranel,c3), —empty(cranel), —in(c3,pl),

—top(c3,p1), —on(c3,cl), top(cl,pl)

take-cranel-loc1-c3-c1-p1l
precond: belong-cranel-locl, attached-p1-locl,

empty-cranel, top-c3-p1, on-c3-c1
delete: empty-cranel, in-c3-p1, top-c3-p1, on-c3-p1

{on-c1-pallet, on-c1-r1, on-c1-c2, ..., at-ri-I1, ...}
add: holding-crane1-c3, top-c1-p1

The blocks world
— infinitely large table with a finite set of blocks
— the exact location of block on the table is irrelevant
— a block can be on the table or on another (single) block

— the planning domain deals with moving blocks by a
computer hand that can hold at most one block

situation example

o 0

T =

© 2014 Roman Bartak
Department of Theoretical Computer Science and Mathematical Logic
bartak@ktiml.mff.cuni.cz

