

Planning & Scheduling

Roman Barták

Department of Theoretical Computer Science and Mathematical Logic

Planning Problem Formalization

Today program

• Problem Formalisation for Classical Planning

- conceptual model
 - state transitions
 - goals
 - initial assumptions
- set representation (propositional logic)
 - states and actions
- classical representation (first-order logic)
 - operators
 - planning domain and planning problem
- some extensions

Planning deals with **selection and organization of actions** that are changing world states.

System Σ modelling states and transitions:

- set of states S (recursively enumerable)
- set of actions A (recursively enumerable)
 - actions are controlled by the planner!
 - no-op
- **set of events E** (recursively enumerable)
 - events are out of control of the planner!
 - neutral event $\boldsymbol{\epsilon}$
- transition function γ : S×A×E \rightarrow P(S)
 - actions and events are sometimes applied separately $\gamma: S \times (A \cup E) \rightarrow P(S)$

Goals in planning

• A planning task is to find which actions are applied to world states to reach some goal from a given initial state.

What is a goal?

- goal state or a set of of goal states
- satisfaction of some constraint over a sequence of visited states
 - for example, some states must be excluded or some states must be visited
- optimisation of some objective function over a sequence of visited states (actions)
 - for example, maximal cost or a sum of costs

How does it work?

- A planner generates plans
- A **controller** takes care about plan execution
 - for each state it selects an action to execute
 - observations (sensor input) are translated to world state

Dynamic planning involves re-planning when the state is not as expected.

Some assumptions

- the system is **finite**
- the system is **fully observable**We know completely the current state.
- the system is deterministic
 → ∀s∈S ∀u∈(A∪E): |γ(s,u)|≤1
- the system is static
 There are no external events.
- the goals are restricted
 - The aim is to reach one of the goal states.
- the **plans** are **sequential**
 - A plan consists of a (linearly ordered) sequence of actions.
- time is implicit
 - Actions are instantaneous (no duration is assumed)).
- planning is done offline
 - State of the world does not change during planning.

Classical planning

 We will work with a deterministic, static, finite, and fully observable state-transition system with restricted goals and implicit time Σ = (S,A,γ).

Planning problem $P = (\Sigma, s_0, g)$:

- $-s_0$ is the **initial state**
- g describes the **goal states**

A solution to the planning problem P is a sequence of actions $\langle a_1, a_2, ..., a_k \rangle$ with a corresponding sequence of states $\langle s_0, s_1, ..., s_k \rangle$ such that $s_i = \gamma(s_{i-1}, a_i)$ and s_k satisfies g

Classical planning (STRIPS planning)

Planning in the restricted model reduces to "path finding" in the graph defined by states and state transitions.

Is it really so simple?

5 locations, 3 piles per location, 100 containers, 3 robots

♥10²⁷⁷ states

This is 10¹⁹⁰ times more than the largest estimate of the number of particles in the whole universe!

This course

- How to represent states and actions without enumerating the sets S and A?
 - recall 10²⁷⁷ states with respect to the number of particles in the universe

How to efficiently solve planning problems?

– How to find a path in a graph with 10^{277} nodes?

Each **state** is described using a **set of propositions** that hold at that state. *example: {onground, at2}*

Each action is a syntactic expression describing:

- which propositions must hold in a state so the action is applicable to that state *example: take: {onground}*
- which propositions are added and deleted from the state to make a new state

example: take:

{onground}⁻, {holding}⁺

Set representation: a planning domain

Let L= $\{p_1, ..., p_n\}$ be a finite set of propositional symbols (language).

A planning domain Σ over L is a triple (S,A, γ):

- $S \subseteq P(L)$, i.e. **state** s is a subset of L describing which propositions hold in that state
 - if $\mathbf{p} \in \mathbf{s}$, then \mathbf{p} holds in \mathbf{s}
 - if $p \notin s,$ then p does not hold in s
- **action** $a \in A$ is a triple of subsets of L
 - a = (precond(a), effects⁻(a), effects⁺(a))
 - effects (a) \cap effects (a) = \emptyset
 - action **a** is applicable to state **s** iff precond(**a**) \subseteq **s**
- transition function γ:
 - $\gamma(\mathbf{s},\mathbf{a}) = (\mathbf{s} \text{effects}(\mathbf{a})) \cup \text{effects}(\mathbf{a})$, if \mathbf{a} is applicable to \mathbf{s}

Planning problem P is a triple (Σ, s_0, g) :

- $-\Sigma = (S,A,\gamma)$ is a planning domain over L
- s₀ is an initial state, s₀ \in S
- $g \subseteq L$ is a set of goal propositions
 - + $S_g = \{s \in S \mid g \subseteq s\}$ is a set of goal states

Plan π is a sequence of actions $\langle a_1, a_2, ..., a_k \rangle$

- the length of plan π is $k = |\pi|$
- a state obtained by the plan π (a transitive closure of γ)
 - $\gamma(s,\pi) = s$, if k=0 (plan π is empty)
 - $\gamma(s,\pi) = \gamma(\gamma(s,a_1), \langle a_2,...,a_k \rangle)$, if k>0 and a_1 is applicable to s
 - $\gamma(s,\pi)$ = undefined, otherwise

Plan π is a **solution plan** for P iff $g \subseteq \gamma(s_0, \pi)$.

- redundant plan contains a subsequence of actions that also solves P
- minimal plan: there is no shorter solution plan for P

Set representation: example

Direct successors of state s:

 $\Gamma(s) = \{\gamma(s,a) \mid a \in A \text{ is applicable to } s\}$

Reachable states:

 $\Gamma_{\infty}(\mathbf{s}) = \Gamma(\mathbf{s}) \cup \Gamma^2(\mathbf{s}) \cup \dots$

Planning problem has a solution iff $S_q \cap \Gamma_{\infty}(s_0) \neq \emptyset$.

Action a is relevant for goal g if and only if:

 $g \cap effects^+(a) \neq \emptyset$

 $g \cap effects(a) = \emptyset$

Regression set for a goal g for (relevant) action a:

 $\gamma^{-1}(g,a) = (g - effects^+(a)) \cup precond(a)$ $\Gamma^{-1}(g) = \{\gamma^{-1}(g,a) \mid a \in A \text{ is relevant for } g\}$ $\Gamma_{\infty}^{-1}(g) = \Gamma^{-1}(g) \cup \Gamma^{-2}(g) \cup \dots$

Planning problem has a solution iff s_0 is a superset of some element in $\Gamma_{\infty}^{-1}(g)$.

Set representation: properties

- Simplicity
 - easy to read

How many states for n containers?

ers? loc1 loc2 loc2

• Computations

- the transition function is easy to model/compute using set operations
- if precond(a) ⊆ s, then $\gamma(s,a) = (s effects^{-}(a)) \cup effects^{+}(a),$

Expressivity

- some sets of propositions do not describe real states
 - {holding, onrobot, at2}
- for many domains, the set representation is still too large and not practical

- Classical representation generalize the set representation by exploiting first-order logic.
 - State is a set of logical atoms that are true in a given state.
 - Action is an instance of planning operator that changes truth value of some atoms.

More precisely:

- L (language) is a finite set of predicate symbols and constants (there are no function symbols!).
- Atom is a predicate symbol with arguments. example: on(c3,c1)
- We can use **variables** in the operators. *example: on(x,y)*

Classical representation: states

State is a set of instantiated atoms (no variables). There is a finite number of states!

 $\{ attached(p1,loc1), in(c1,p1), in(c3,p1), top(c3,p1), on(c3,c1), on(c1,pallet), attached(p2,loc1), in(c2,p2), top(c2,p2), on(c2,pallet), belong(crane1,loc1), empty(crane1), adjacent(loc1,loc2), adjacent(loc2,loc1), at(r1,loc2), occupied(loc2), unloaded(r1) \}.$

- The truth value of some atoms is changing in states:
 - fluents
 - example: at(r1,loc2)
- The truth value of some state is the same in all states
 - rigid atoms
 - example:
 - adjacent(loc1,loc2)

We will use a classical **closed world assumption**. An atom that is not included in the state does not hold at that state!

operator o is a triple (name(o), precond(o), effects(o))

- name(o): name of the operator in the form $n(x_1,...,x_k)$
 - n: a symbol of the operator (a unique name for each operator)
 - x₁,...,x_k: symbols for variables (operator parameters)
 - Must contain all variables appearing in the operator definition!

– precond(o):

- literals that must hold in the state so the operator is applicable on it
- effects(o):
 - literals that will become true after operator application (only fluents can be there!)

 $\mathsf{take}(k, l, c, d, p)$

;; crane k at location l takes c off of d in pile p precond: belong(k, l), attached(p, l), empty(k), top(c, p), on(c, d)effects: holding(k, c), $\neg empty(k)$, $\neg in(c, p)$, $\neg top(c, p)$, $\neg on(c, d)$, top(d, p)

Classical representation: actions

Notation:

- $S^+ = \{ \text{positive atoms in } S \}$
- $-S^{-} = \{atoms, whose negation is in S\}$

Action **a** is **applicable** to state **s** if any only precond⁺(**a**) \subseteq **s** \land precond⁻(**a**) \cap **s** = \varnothing

Classical representation: a planning domain

Let L be a language and O be a set of operators.

Planning domain Σ over language L with operators O is a triple (S,A, γ):

- **states** $S \subseteq P(\{a | instantiated atoms from L\})$
- actions A = {all instantiated operators from O over L}
 - action a is applicable to state s if precond⁺(a) ⊆ s ∧ precond⁻(a) ∩ s = Ø
- transition function γ :
 - $\gamma(\mathbf{s},\mathbf{a}) = (\mathbf{s} \text{effects}(\mathbf{a})) \cup \text{effects}(\mathbf{a})$, if \mathbf{a} is applicable on \mathbf{s}
 - S is closed with respect to γ (if s ∈ S, then for every action a applicable to s it holds γ(s,a) ∈ S)

- **Planning problem** P is a triple (Σ, s_0, g) :
 - $-\Sigma = (S,A,\gamma)$ is a planning domain
 - $-s_0$ is an initial state, $s_0 \in S$
 - g is a set of instantiated literals
 - state s satisfies the goal condition g if and only if g⁺⊆ s ∧ g⁻ ∩ s = Ø
 - $S_g = {s \in S | s \text{ satisfies } g} a \text{ set of goal states}$
- Usually the planning problem is given by a triple (O,s₀,g).
 - O defines the the operators and predicates used
 - s₀ provides the particular constants (objects)

Classical representations: plans

Plan π is a sequence of actions $\langle a_1, a_2, ..., a_k \rangle$.

Plan π is a **solution of** P if and only if $\gamma(s_0, \pi)$ satisfies g.

- Planning problem has a solutions iff $S_g \cap \Gamma_{\infty}(s_0) \neq \emptyset$.
- Planning problem has a solution iff s_0 is a superset of some element from $\Gamma_{\infty}^{-1}(g)$ (but γ^{-1} is defined a bit differently).

Action a is relevant for a goal g if and only if :

action contributes to g: g \cap effects(a) $\neq \emptyset$

action effects are not in conflict with g:

- $g^{-} \cap \text{effects}^{+}(a) = \emptyset$
- $g^+ \cap effects^-(a) = ∅$

Regression set for a goal g for a (relevant) action a: $\gamma^{-1}(q,a) = (q - effects(a)) \cup precond(a)$

Classical representation: an example plan

Classical representation: extensions

Syntactical extensions

- typed variables (each constant from a language has a type)
 - Example: type robot: rob1, rob2, rob3
- existential quantification of goals (closed formula!)
 - Example: ∃x,y (on(x,c1) ∧ on(y,c2))

Conditional operators

- one operator encapsulates several "mini" operators, each with own preconditions and effects
- all mini operators with satisfied preconditions are applied together
- Example: Switch on/off can be done using the same operator

Disjunctive preconditions

- precondition can be described using any logical formula
- Example: a robot R goes from A to B either if A and B are connected via a road or R is a four-wheel-drive car

Attached procedures (to operators)

- they are used to verify more complex preconditions (for example numerical preconditions)
- Example: weight(c) ≤ maxweight(r)

• Axioms

- for automated inference of some facts
- Example: ∀ I,I' (adjacent(I,I') ⇔ adjacent(I',I))
- This must be done carefully for fluents:
 - $\forall k \ (\neg \exists x \ holding(k, x) \Rightarrow empty(k))$
 - $\forall k \ (\exists x \ holding(k, x) \Rightarrow \neg empty(k))$
 - Fluents can be split into two sets:
 - Primal atoms, that can be used both in preconditions and effects (for example, holding)
 - Secondary atoms, that can be used in preconditions only; cannot be used in effects (for example, empty)

Comparison of representations

- Expressive power of both representations is identical.
- However, the translation from the classical representation to the set representation brings **exponential increase of size**.

The blocks world

- infinitely large table with a finite set of blocks
- the exact location of block on the table is irrelevant
- a block can be on the table or on another (single) block
- the planning domain deals with moving blocks by a computer hand that can hold at most one block

situation example

© 2014 Roman Barták Department of Theoretical Computer Science and Mathematical Logic bartak@ktiml.mff.cuni.cz