
A New Labeling Algor ithm to Solve Minimal
Per turbation Problems: A Preliminary Repor t

Roman Barták1, Tomáš Müller1, Hana Rudová2

1 Charles University, Faculty of Mathematics and Physics
Malostranské nám. 2/25, Prague, Czech Republic

{ bartak, muller} @ktiml.mff.cuni.cz

2 Masaryk University, Faculty of Informatics
Botanická 68a, Brno, Czech Republic

hanka@fi.muni.cz

Abstract. Solving real-life planning, scheduling, and timetabling problems is
usually an iterative process in which, after seeing the generated solution, users
may change the problem constraints. This change requires producing a new
solution which satisfies these constraints but not being too far from the original
solution. This type of problem is called a minimal perturbation problem. The
paper formally describes a minimal perturbation problem in the context of
constraint satisfaction and it proposes a new depth-first search algorithm for
solving a particular instance of the minimal perturbation problem.

Introduction

Solving real-life planning, scheduling, and timetabling problems often requires
making changes in the produced solution [5,6,8,14,19]. Then, the automated solver
should be capable of integrating these changes into a new solution. There are several
reasons for introducing such changes. For example, if the original environment was
changed so the computed solution can not be applied then we would like to obtain a
new solution based on the changes introduced. A typical example is a gate allocation
problem in which the system must be able to react on-line to flight delays and to other
unexpected events. It could also be applied where ever there are certain objectives
that are impossible to formulate formally in advance. By proposing a change to the
solution, the user may describe a preferred solution without specifying the objectives
formally. For instance, in making a school timetable, an administrator may be able to
specify the individual preferences of professors by re-allocating their lectures [14,17].
Then the timetabling system should re-allocate other lectures in such a way that the
problem constraints are met. Last but not least, by proposing changes to a partial
solution the user may help the solver to recover from a dead-end. Thus, this user
guidance may help to solve problems that would be hard for a fully automated solver.

A typical expectation from such interactive software is that after making a change
to the problem formulation, a new solution will be derived from the existing (initial)
solution, rather than producing a completely new solution from scratch [4,16,20]. As

a result, the number of differences between the initial solution and the new solution
can be kept as small as possible while still respecting all the constraints that the
solution must satisfy. Again, there are several reasons to keep the new solution as
close as possible to the initial solution. First of all, it is easier for the users to track the
solving process if they can observe the additional changes that the system needed to
make in order to react to the user changes. Second, if the initial solution has already
been published, such as the assignment of gates to flights, then one should avoid too
frequent changes, which may just end up confusing passengers. It is also possible that
the changes to this published solution would bring about other user changes (because
originally satisfied wishes of these users may be violated) and thereby raise the
specter of a cumulative “avalanche reaction” . Altogether, it is desirable that the
problem solving process should continue as smoothly as possible after any proposed
change to the initial solution [6,16,20].

Our work has been motivated by a large scale timetabling problem at Purdue
University, USA where the primary focus was to provide a support for making
changes to a generated timetable. Once timetables are published they require many
changes based on additional user input. These changes should be integrated into the
problem solution with a minimal impact on any previously generated solution. Since
we are already able to generate the solution for the initial problem [17], our current
work consists of solving the new problem with some additional requirements. Here
again, the basic need is to keep the new solution as close as possible to the published
solution of the initial problem – given that the new solution is a solution of the altered
problem.

The problem of finding a new solution after making changes to the problem
formulation has been addressed by a number of researchers [4-8,13,14,16,19,20].
Probably the closest approach to our problem area is a minimal perturbation problem
introduced by El Sakkout, Richards, and Wallace [7]. They formally defined the
minimal perturbation problem (in the context of constraint satisfaction) as a constraint
satisfaction problem (CSP) Θ together with its (initial) solution α and two sets of
added Cadd and removed Cdel constraints [6]. The task is to find a solution of the new
constraint satisfaction problem that arises from the original CSP Θ by adding the
constraints from Cadd and removing the constraints from Cdel while still remaining as
close as possible to the initial solution. The distance between the two solutions
(complete assignments of the variables) is measured via a user defined function δ.

In [1], we proposed a new definition of MPP, working with arbitrary changes to the
CSP (like adding/removing variables and constraints and changing variables’
domains). The main difference from the original formulation is that some variables
may be removed while other variables may be added. Moreover, this new definition
of MPP allows a partial assignment to be a solution of the problem which supports
over-constrained as well as hard-to-solve problems. Last but not least, we have
introduced a more specific distance function δ that measures the distance between two
(partial) assignments as a number of variables with changed values. In brief, our
formulation of MPP requires that only a minimal number of variable assignments is
changed after the problem modification. This new formulation of MPP suits better our
problem area (university timetabling) because it supports arbitrary changes to the
problem (e.g., adding and removing lectures) and it allows partial assignments to be a

solution (e.g., when a complete timetable cannot be found). The changed variables
describe naturally the changes in the timetable.

In this paper, we propose a slightly modified formulation of MPP. It preserves the
good characteristics of the definition proposed at [1], i.e. arbitrary changes to the
problem and handling partial assignments. Also the new definition generalizes a
distance function. We also describe a new algorithm to solve a particular instance of
MPP. This algorithm is capable of solving over-constrained and hard-to-solve
problems while still guaranteeing a limited running time. The algorithm is based on
the concept of a limited assignment number (LAN) search algorithm that we had
proposed in [18] to find an initial solution of the problem. This algorithm tries to
assign a maximal number of variables in such a way that the resulting problem is still
consistent. The LAN Search algorithm does not guarantee finding a complete solution
but it provides a good partial solution in a limited time.

The paper is organized as follows. We first describe the basic notions of constraint
satisfaction problems along with our extension to describe partial solutions of over-
constrained problems. Then we formally define a minimal perturbation problem
(MPP) and its solution. Finally, we present a new search algorithm for solving a
particular instance of MPP. This algorithm combines the principles of LAN Search
and Branch-and-Bound algorithms.

Preliminar ies

A constraint satisfaction problem (CSP) is a triple Θ=(V,D,C), where

• V={ v1,v2,…,vn} is a finite set of variables,
• D={ D1,D2,…,Dn} is a set of domains (i.e., Di is a set of possible values for the

variable vi),
• C={ c1,c2,…,cm} is a finite set of constraints restricting the values that the

variables can take at the same time.

A solution to the constraint satisfaction problem Θ is a complete assignment of the
variables from V that satisfies all of the constraints.

For many problems it is hard or even impossible to find such a solution. For
example, in over-constrained problems [9], there does not exist any complete
assignment which satisfies all of the constraints. Therefore, other definitions of
problem solution, like Partial Constraint Satisfaction [9], were introduced. The basic
idea of these approaches is to weaken the problem, e.g., by adding more compatible
tuples to the constraints [9]. In [1], we introduced a new approach to solve such
problems based on weakening the definition of the solution. The idea is to assign as
many variables as possible while still keeping this partial assignment consistent. If the
users get such a partial assignment, they may relax some constraints in the problem
(typically some of the constraints among the non-assigned variables that cause
conflicts) so the system can try to extend the existing assignment to other variables.

Formally, let Θ be a CSP and C be a consistency technique (for example arc
consistency). We say that a constraint satisfaction problem is C-consistent if the
consistency technique deduces no conflict (e.g., for arc consistency, the conflict is

indicated by emptying some domain). We denote C(Θ) the result of the consistency
test which could be either true, if the problem Θ is C-consistent, or false otherwise.
Let Θ be a CSP and σ be a (partial) assignment of variables, then we denote Θσ
application of the assignment σ to the problem Θ, i.e., domains of the variables in σ
are reduced to a single value defined by the assignment. Finally, we say that a partial
assignment σ is C-consistent with respect to some consistency technique C if, and
only if, C(Θσ) holds. Note that a complete consistent assignment is a solution of the
problem. Note also that backtracking-based techniques typically extend a partial
consistent assignment towards a complete (consistent) assignment.

Example (partial arc-consistent assignment):
Assume the following CSP:

Θ = ({ a,b,c} , { Da={ 1,2} , Db={ 1,2} , Dc={ 1,2,3} } , { a≠c, a≠b, b≠c}).
Then σ = { a/1,b/2} is a partial arc-consistent assignment because

Θσ = ({ a,b,c} , { Da={ 1} , Db={2} , Dc={ 1,2,3} } , { a≠c, a≠b, b≠c})
is (arc) consistent (domains after reduction are { Da={ 1} , Db={ 2} , Dc={ 3} }).

As we already mentioned, for some problems there does not exist any complete
consistent assignment. These problems are designated as “over-constrained” . In such
a case, we propose to look for the maximal C-consistent assignment. We say that the
C-consistent assignment is maximal for a given CSP if there is no other C-consistent
assignment with a larger number of assigned variables. We can also define a weaker
version, so called locally maximal C-consistent assignment. Locally maximal C-
consistent assignment is a C-consistent assignment that cannot be extended to another
variable(s). Notice the difference between the above two notions. The maximal C-
consistent assignment is defined using the cardinality of the assignment (the number
of assigned variables) and it has a global meaning. The locally maximal C-consistent
assignment is defined using a subset relation, i.e., it is not possible to assign an
additional variable without getting inconsistency. The maximal C-consistent
assignment is the largest (using cardinality) locally maximal C-consistent assignment.

Using a particular consistency technique C gives users the possibility to define the
desired features of the assignment. For example, if the consistency test checks only
validity of the constraints between the assigned variables then we get the largest
partial assignment and this assignment cannot be extended to another variable without
getting a constraint violation. If a stronger consistency technique is used, e.g., arc
consistency, we may expect shorter consistent assignments. However, these
assignments can be extended to another variable v (for AC) without getting a
constraint violation (but with getting a failure of the consistency test which indicates
that there it is not possible to extend the assignment beyond v without getting a
constraint violation). In some sense, a solution defined using a stronger consistency
level gives the user some advance for future extensions of the assignment. In
particular, publishing a shorter solution gives more options for future changes. If
these problem changes will not come then the user may easily extend the solution (a
bit) without violating the constraints. Still, we want to publish assignments that are as
large as possible.

If the constraint satisfaction problem has a solution, then any maximal consistent
assignment is the solution. Thus, looking for a maximal consistent assignment is a
general way of solving CSP because it covers standard CSP as well as over-

constrained problems. Moreover, it is not necessary to know in advance whether the
problem is over-constrained or not. However, it may be even hard to find a maximal
consistent assignment for some problems. In such a case, we propose to return the
largest locally maximal consistent assignment that can be found using given resources
(e.g., time). This approach has a strong real-life applications, for example in
scheduling and timetabling [14,17]. It means that the system allocates as many
activities as possible in given time and that no more activity can be allocated without
getting inconsistency. Typically, the solving algorithms based on the above idea select
some sub-space of the solution space. For this sub-space, they find a maximal
consistent assignment which is a locally maximal consistent assignment in the
original solution space. For example, the LAN Search algorithm [18] restricts the
number of assignments tried per variable.

Minimal Per turbation Problem – A Formal View

Now we can formally define a minimal perturbation problem (MPP) as a quadruple
Π = (Θ, C, δ, α), where:

• Θ is a CSP,
• C is a consistency technique defining the solution, i.e. a maximal C-

consistent assignment,
• δ is a distance function defining a distance between two (partial)

assignments,
• α is a (partial) assignment for Θ called an initial assignment.

A solution to the minimal perturbation problem Π = (Θ, C, δ, α) is a (locally)
maximal C-consistent assignment β for Θ such that δ(α,β) is minimal. The idea
behind the solution of MPP is apparent – the task is to find the best (largest) possible
assignment of variables for the problem Θ in such a way that it differs minimally
from the initial assignment (from the solution of the original problem).

Recall that the minimal perturbation problem should formalize handling changes in
the problem formulation. One may ask where the original problem Θorig is in the
above definition. We can describe the problem change via a function F that maps the
variables in Θorig to the variables in Θ. For some variables v from Θorig, the function F
might not be defined which means that the variable v has been removed from the
problem. However, if the function F is defined (we write F(v)↓ if F is defined for v)
then it is unique (it is a one-to-one mapping). Formally, v≠u & F(v)↓ & F(u)↓ �
F(v)≠F(u). Also, for some variables v from Θ, the origin might not be defined (i.e.,
there is no variable x such that F(x) = v), which means that the variable v has been
added to the problem. Notice also that the constraints and domains can be changed
arbitrarily when going from Θorig to Θ. We do not need to capture such changes using
the mapping functions like F because we are concerned primarily with the variable
assignments. Now, assume that σ is a solution to Θorig (in general, σ can be any
assignment of variables in Θorig, but it is more natural for σ to be a solution to Θorig).

Then the initial assignment α in the definition of MPP is defined in the following
way:

α = { v/h | ∃x∈Θorig F(x)=v & x/h∈σ} 1.

However, only changes in the solution are important for us. The current definition
already allows arbitrary changes to the problem formulation. In addition, it is enough
to know the initial assignment α to solve MPP. As a consequence, we do include
neither the original problem Θorig nor the mapping function F in the definition of
MPP.

The distance function δ in the definition of MPP is specified by the user. For
purposes of our timetabling problem, we use a specific distance function describing
the number of differences between two assignments. Let σ and γ be a two (partial)
assignments for Θ. Then we define W(σ,γ) as a set of variables v such that the
assignment of v in σ is different from the assignment of v in γ, i.e.

W(σ,γ) = { v∈Θ | v/h∈σ & v/h’∈γ & h≠h’ } .

We call W(σ,γ) a distance set for σ and γ and the elements of the set are called
perturbations. The distance function is then defined in the following way:

δ(σ,γ) = |W(σ,γ)|.

If a metric is defined for variables’ domains then it is possible to specify other metric
distance functions, for example:

δ(σ,γ) = maxv { distv(h,h’) | v/h∈σ & v/h’∈γ } ,
δ(σ,γ) =

�
v{ distv(h,h’) | v/h∈σ & v/h’∈γ } , or

δ(σ,γ) = (
�

v{ distv
2(h,h’) | v/h∈σ & v/h’∈γ })1/2

where distv is a distance function (metric) on the domain of the variable v.
Notice that the above formulation of MPP generalizes the formulation from [6] by

working with partial assignments rather than with complete assignments and by
allowing arbitrary changes to the problem. Also, we reformulated the definition from
[1] to be more general but to keep the spirit of our original formulation from [1].

Example:
Let α={ b/3} be an initial assignment for a CSP Θ with variables V={ b,c,d} ,
domains D = { Db={ 1,3} , Dc={ 1,2,3} , Dd={ 2,3} } , and constraints C = { b≠c,
c≠d, d≠b} . Then the problem Θ has the following solutions (maximal arc-
consistent assignments):

• β1 = { b/1,c/2,d/3} (W(α,β1) = { b}),
• β2 = { b/1,c/3,d/2} (W(α,β2) = { b}),
• β3 = { b/3,c/1,d/2} (W(α,β3) = { }),

but only the solution β3 is a solution of MPP Π = (Θ, AC, |W|, α).

1 For simplicity reasons we write v∈Θ which actually means v∈V, where Θ = (V,D,C).

MPP Solver

This section describes a depth-first search algorithm finding solutions to MPP where
arc-consistency is used as the consistency technique. Function W defines the distance
between two assignments. In terms of CSP, we describe a labeling procedure that is
applied to Θ. This procedure works in steps. In each step, it selects a not-yet assigned
variable and tries to find a value for this variable. We use a standard MAC
(Maintaining Arc Consistency) approach to keep the constraint network arc consistent
during the search.

We formulate the minimal perturbation problem in such a way that an incomplete
assignment could be a solution to the problem. It helps us to solve over-constrained as
well as hard problems. Traditionally, when all attempts to assign a value to the
variable failed, depth-first search algorithms would backtrack to the last assigned
variable. Then it would try to find another value for it. To find a locally maximal
consistent assignment, we introduce here the concept of locked variables. Instead of
immediate backtracking, the variable whose assignment failed is locked and the
search procedure proceeds to the next, not yet assigned, variable. The locked variables
still participate in constraint propagation so the above mechanism extends any partial
assignment of variables to a locally maximal arc-consistent assignment. Notice also
that the locking mechanism is local so the variable is locked only in a given search
sub-tree. Let us now consider what happens when algorithm backtracks above the
level where the variable has been locked. At this point, the variable is unlocked and it
can then participate in labeling again.

Recall that our original motivation was to support interactive changes in the
problem, which expects that the solver will return a solution quickly after any change.
Since exploring a complete search space of the problem could be hard and a time
consuming task, we propose to explore just a part of the search space by applying
techniques of LAN Search [18]. The basic idea of LAN (Limited Assignment
Number) Search is to restrict the number of attempts to assign a value to the variable.
This number (called LAN limit) is maintained for each variable separately. This
differentiates the LAN Search from other incomplete tree search techniques like
Bounded Backtrack Search [10] or Credit Search [3]. By applying the above
restriction, we get a linear search space (lan_limit * number_of_variables) instead of
exponential (domain_sizenumber_of_variables). On the other hand, the algorithm lost
completeness so it does not guarantee finding an optimal solution (which is not a
problem in real-life applications provided that the algorithm finds “a good solution in
a reasonable time”).

The LAN principle is implemented using a counter for each variable. The counter
is initialized by the LAN limit and after each successful assignment of value to the
variable2, the counter is decreased. When the counter is zero, the variable has reached
the maximal allowed limit of assignments – and we say that the variable expired. The
labeling procedure does not attempt to assign a value to expired variables. However, a
value can still be selected for the expired variables via constraint propagation.

2 Successful assignment of value to the variable means that the value is assigned to the

variable, this change is propagated via constraints to other variables and no inconsistency is
detected.

A minimal perturbation problem is a sort of constraint optimization problem.
There are two objective criteria behind MPP; namely maximizing the size of the
assignment and minimizing the number of perturbations. The formal definition of
MPP expects a lexicographic ordering [max. size, min. perturbations] so the labeling
procedure follows these objectives. The core labeling algorithm, as described above,
explores locally maximal arc-consistent assignments. To solve MPP, we need to
extend the algorithm to a branch-and-bound like scheme. First, when the algorithm
finds a locally maximal arc-consistent assignment, it saves it as a bound and then it
continues in exploring the search tree. In each step (an attempt to label some
variable), the algorithm checks whether the current partial assignment can be a
solution, i.e., whether it can be better than the so-far best saved assignment. If the
answer is no then we can backtrack immediately without exploring the sub-tree. To
do this comparison, we need to estimate the features of the best locally maximal
consistent assignment that can be obtained from the current partial assignment. In
particular, we need to estimate the maximal size of such extended assignment and the
minimal number of perturbations. To keep the algorithm sound, we need an upper
estimate of the size and a lower estimate of the number of perturbations. The upper
estimate of the size is simply the number of all variables minus the number of locked
variables. Recall, that the algorithm did not succeed to assign a value to the locked
variable so this variable will not participate in the locally maximal arc-consistent
assignment. On the other hand, the expired variables may still be part of the locally
maximal arc-consistent assignment because the value can be selected for them via
constraint propagation. We estimate the minimal number of perturbations simply by
counting the variables where the initial value is out of its current domain. The initial
value for the variable is taken from the initial assignment. If no such value exists (no
value is assigned to the variable in the initial assignment) then the variable is always
assumed as a perturbation (which is realized by using a dummy initial value for v out
the domain Dv). Note, that there is a constant number of such variables, say K, so
minimizing |W| is equivalent to minimizing |W|+K.

It is possible to guide the search procedure towards a solution of MPP via standard
variable and value selection heuristics. We decided to abstract some of this general
information from heuristics directly to the labeling procedure. Then the heuristics can
be designed more for a particular problem rather then coping with general principles
of MPP. Our motivation is as follows: if the initial value is in the domain of the
variable then we may expect that this is a good value for the variable because it was
already part of the solution of a similar problem. Thus, we have a verified heuristics
telling us what value should be used. This follows the results from [15] where it has
been shown theoretically that backtracking-based search guided by information about
a complete assignment has a better average running time. For variables without an
initial value in their domain, we must rely on general heuristics which have not been
verified yet (and thus, it is harder to find a good value for such variables). According
to the first-fail principle, it is better to handle variables which do not have an initial
value in their domains first, and then to try finding a value that keeps the initial values
in the domain of the other variables. In the second stage, the algorithm tries to assign
an initial value to remaining variables. If it is not possible to use the initial value for

some variable3, then the algorithm removes the initial value from domain of this
variable and other values will be tried in turn. The built-in variable selection heuristic
prefers variables with no initial value in their domain. Figure 1 shows an abstract
scheme of the proposed labeling procedure. The procedure distribute selects only
non-locked, non-expired variables and distributes them into two groups of variables
with/without initial value in their current domain.

label(Variables,LockedVariables)

1 if validate_bounds(Variables) then
2 (VarsNoInit,VarsWithInit)<-distribute(Variables,LockedVariables)
3 if empty VarsNoInit then
4 if empty VarsWithInit then
5 save_best_solution(Variables)
6 else
7 V <- select_variable(VarsWithInit)
8 label(Variables,LockedVariables) under V=InitValue(V)
9 label(Variables,LockedVariables) under V\=InitValue(V)
10 label(Variables,[V|LockedVariables])
11 end if
12 else
13 V <- select_variable(VarsNoInit)
14 Value <- nil
15 while Value<-select_next_value(V,Value) & lan_limit_ok(V) do
16 label(Variables,LockedVariables) under V=Value
17 end while
18 label(Variables,[V|LockedVariables])
19 end if
20 end label

 solve(Variables)
1 label(Variables,[])
2 return saved_best_solution
3 end solve

Fig. 1. Labeling procedure for solving minimal perturbation problems.

We have implemented the proposed labeling procedure in clpfd library of SICStus
Prolog [2] and we tested it using several benchmark problems derived from
timetabling problems. In these tests, the goal is to place a set of rectangles to a
restricted area. The position of the rectangles can be further restricted via constraints.
We start with some correct placement of rectangles which represents the initial
solution. Then, for randomly selected rectangles we changed their position constraints
in such a way that the current position is not allowed. The task is to find a new
position of rectangles satisfying the position constraints and minimizing the number
of differences from the initial solution (Figure 2 shows an example of such problem).

3 Constraint propagation is local so even if the value is still in the variable domain, it does not

imply that the value can be assigned to the variable.

Fig. 2. Solution of a simple minimal perturbation problem: rectangle 1 is required to be placed
in row B while rectangles 7 and 9 are required to stay in rows A-C. The solver found an
optimal solution with 3 perturbations (right).

Conclusions

Including dynamic features is a recent trend in planning, scheduling, and timetabling.
In this paper, we addressed one of these features - namely finding a solution for a
changed problem that does not differ much from the solution of the original problem
– a so called “minimal perturbation” problem (MPP). We reformulated the definition
of MPP from [1] to be more general and we proposed a new labeling algorithm to
solve a particular instance of the minimal perturbation problem. The algorithm has a
linear time complexity, thanks to a LAN limit [18], and it is capable of solving over-
constrained and hard problems by looking for locally maximal arc-consistent
assignments. A new technique of variable locking has been introduced there to find
locally maximal arc-consistent assignments.

The preliminary tests showed that the proposed algorithm is able to find optimal or
close to optimal solutions of MPP. Extensive tests of this model are currently being
performed. Our future works will include experiments with different variable ordering
heuristics for the labeling procedure as well as comparing different concepts of the
solving algorithm, for example algorithms based on local search techniques and their
combination with backtracking techniques [21] and with constraint propagation
[12,16]. Also the modification of other tree search techniques, such as the Limited
Discrepancy Search [11], is assumed.

Acknowledgements

Research is supported by the Czech Science Foundation under the contract no.
201/99/0942 and by Purdue University. We would also like to thank the reviewers for
useful comments, in particular for pointing our attention to the formulation of the
maximal consistent assignment.

4

3

10

9
7

5

8

1
6
2

4

3

10

9 7

5

8

1
6 2

A

B

C

D

E

F

References

1. R. Barták, T. Müller, and H. Rudová. Minimal Perturbation Problem – A Formal View.
Neural Network World 13(5): 501-511, 2003.

2. M. Carlsson, G. Ottosson, and B. Carlson. An open-ended finite domain constraint solver.
In Programming Languages: Implementations, Logics, and Programming. Springer-Verlag
LNCS 1292, 1997.

3. A. M. Cheadle, W. Harvey, A. J. Sadler, J. Schimpf, K. Shen and M. G. Wallace. ECLiPSe:
An Introduction. IC-Parc, Imperial College London, Technical Report IC-Parc-03-1, 2003.

4. R. Dechter and A. Dechter. Belief maintenance in dynamic constraint network. In AAAI-
88, pp. 37-42, AAAI Press, 1988.

5. B. Drabble, N. Haq. Dynamic Schedule Management: Lessons from the Air Campaign
Planning Domain. In Pre-proceedings of the Sixth European Conference on Planning
(ECP-01), pp. 193-204, 2001.

6. H. El Sakkout, T. Richards, and M. Wallace. Minimal Perturbation in Dynamic Scheduling.
In Proceedings of the 13th European Conference on Artificial Intelligence (ECAI-98). John
Wiley & Sons, 1998.

7. H. El Sakkout and M. Wallace. Probe Backtrack Search for Minimal Perturbation in
Dynamic Scheduling. Constraints 4(5): 359-388. Kluwer Academic Publishers, 2000.

8. M. S. Fox. ISIS: A Retrospective. In Intelligent Scheduling. Morgan Kaufmann Publishers,
pp. 3-28, 1994.

9. E.C. Freuder and R.J. Wallace. Partial Constraint Satisfaction. Artificial Intelligence,
58:21-70, 1992.

10. W. D. Harvey. Nonsystematic backtracking search. PhD thesis, Stanford University, 1995.
11. W. D. Harvey and M. L. Ginsberg. Limited discrepancy search. In Proceedings of the 14th

International Joint Conference on Artificial Intelligence, pp. 607-615, Morgan Kaufmann,
1995.

12. N. Jussien and O. Lhomme. Local search with constraint propagation and conflict-based
heuristics. Artificial Intelligence, 139(1):21 45, 2002.

13. I. Miguel and Q. Shen. Hard, Flexible and Dynamic Constraint Satisfaction. Knowledge
Engineering Review, 14(3):199–220, 1999.

14. T. Müller and R. Barták. Interactive Timetabling: Concepts, Techniques, and Practical
Results. In Proceedings of the 4th International Conference on the Practice and Theory of
Automated Timetabling (PATAT2002), pp. 58-72, 2002.

15. P. W. Purdom, Jr. and G. N. Haven. Probe order backtracking. SIAM Journal on
Computing, 26(2):456-483, 1997.

16. Y. P. Ran, N. Roos, H. J. Herik. Approaches to find a near-minimal change
solution for Dynamic CSPs. In Fourth International Workshop on Integration of
AI and OR techniques in Constraint Programming for Combinatorial
Optimisation Problems, pp. 373-387, 2002.

17. H. Rudová and K. Murray. University Course Timetabling with Soft Constraints. In
Practice And Theory of Automated Timetabling IV. Springer-Verlag LNCS 2740, 2003.

18. H. Rudová and K. Ve
�
mi

�
ovský, Limited Assignment Number Search Algorithm. In

SOFSEM 2002 Student Research Forum, pp. 53-58, 2002.
19. S. F. Smith. OPIS: A Methodology and Architecture for Reactive Scheduling. In Intelligent

Scheduling, pp. 29-66, Morgan Kaufmann Publishers, 1994.
20. G. Verfaillie and T. Schiex. Solution reuse in dynamic constraint satisfaction problems. In

AAAI-94, pp. 307-312, AAAI Press, 1994.
21. J. Zhang and H. Zhang. Combining local search and backtracking techniques for constraint

satisfaction. In AAAI-96, pp. 369-374, AAAI Press, 1996.

