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Abstract. Constraint programming is an approach for solving (mostly
combinatorial) problems by stating constraints over the problem variables. In
some problems, there is no solution satisfying all the constraints or the problem
formulation must deal with uncertainty, vagueness, or imprecision. In such a
case the standard constraint satisfaction techniques dealing with hard
constraints cannot be used directly and some form of soft constraints is
required. In the paper we survey four generic models for soft constraints,
namely hierarchical, partial, valued, and semiring-based constraint satisfaction.

1 Introduction

Many problems can be expressed in the form of variables with domains - sets of
possible values for the variables - and constraints restricting the feasible combinations
of variables' values. To solve the problem one needs to find a value for each variable
in such a way that all the constraints are satisfied. This is a view of world using the
glasses of constraint programming (CP) - a modern technology for solving
combinatorial (optimisation) problems. In most current applications of CP, the
variables' domains are finite, we are speaking about constraint satisfaction [7,8], but
the CP framework is applicable to infinite domains as well (even if completely
different technology is used for constraint solving over infinite domains).

Usually, the constraints are assumed to be hard, i.e., the tuple of values is either
allowed or not. If there are many constraints imposed on problem variables, it could
be impossible to satisfy them all, such problems are called over-constrained. In many
other situations, we need to model fuzziness, possibilities, preferences, probabilities,
costs, etc. so the crisp constraints are not enough to model and solve such problems.
Therefore, soft constraints have been proposed to model originally the over-
constrained problems and later the problems with fuzziness, uncertainty etc. Soft
constraint can be seen as a preferential constraint whose satisfaction is not required
but preferred. There exist several models allowing users to describe how neatly the
constraint is satisfied. In the paper we describe four generic models of soft
constraints: constraint hierarchies, and partial, valued, and semiring-based constraint
satisfaction.
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The models of soft constraints can be applied in several areas. Originally, soft
constraints have been proposed to solve over-constrained problems, i.e., the problems
where there is no solution satisfying all the constraints. In Section 2 we give a small
example of the over-constrained problem. By weakening some constraints into
preferential/soft constraints, the system may find a solution satisfying all the hard
constraints and as many as possible preferential constraints. To distinguish between
various levels of soft constraints, a hierarchy of levels can be used. We describe a soft
constraints framework based on constraint hierarchies in Section 3. Instead of
labelling constraints with preferences, it is possible to weaken the original problem in
such a way that there exists a solution of the weakened problem. In Section 4 we
describe several ways of problem weakening and the general concept based on this
idea - partial constraint satisfaction. When the idea of soft constraints appeared, the
researchers find it useful not only for modelling over-constrained problems but also
for modelling problems where the user states some preferences, uncertainty, fuzziness
etc. We call these problems simply soft problems. In Section 5, we describe a concept
of valued constraint satisfaction based on idea of adding valuations to constraints. A
similar concept is used in semiring-based constraint satisfaction (Section 6) but the
valuations are added to particular tuples rather than to constraints. Thanks to defining
a partial order of valuations, the semiring-based constraint satisfaction can be
naturally applied to solve multi-criteria optimisation problems.

2 A Motivation Example

For purposes of this paper we will use a simple, toy problem from [11] describing a
robot seeking to choose matching clothes. Even if this is a small problem for
pedagogical purposes, it could be regarded more seriously as a simple version of a
configuration problem. The problem is to dress a robot using a minimal wardrobe:
sneakers and Cordovans for footwear, a red and a white shirt, and three pairs of
trousers: blue, denim, and grey. The fashion consultant told the robot that:

• the sneakers only go with the denim trousers,
• the Cordovans only go with the grey trousers and the white shirt,
• the white shirt goes with either denim or blue trousers, and
• the red shirt only goes with the grey trousers.

The fashion rules naturally form the constraints under which we operate. The
variables correspond to parts of clothes: footwear, trousers, and shirt, while available
wardrobe makes domains of the variables. Figure 1 shows the problem as a constraint
graph. Visibly, there is no solution satisfying all the constraints, i.e., it is not possible
to dress the robot in such a way that all the fashion rules are satisfied. Thus, it is an
over-constrained problem. Still, we need to dress the robot somehow. In the next two
sections we show some ways how to solve the robot clothing problem either by
adding preferences to fashion rules (constraint hierarchies) or by weakening the
original problem (partial constraint satisfaction).
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Fig. 1. A robot clothing problem. The ovals/nodes describe the variables with possible values
inside them (domains). The edges connect fashion-feasible combinations of wardrobe.

3 Constraint Hierarchies

As we mentioned at the end of the previous section, one of the ways how to solve the
robot clothing problem is to ask the fashion consultant to put some preferences to
individual constraints. Assume that the result of this consultation is that:

• the shirt must match trousers; it is a required constraint,
• it is strongly preferred if footwear matches trousers but it is not required; it is a

strong constraint,
• it would be perfect if the shirt matches footwear but it is not a big faux pas if it

does not match; it is a weak constraint.

Having the above preferences about the constraints we can reformulate the original
problem. Now, the task is to find a solution satisfying all the required constraints and
satisfying the preferential constraints as much as possible. Naturally, we prefer
satisfaction of a stronger constraint to satisfaction of a weaker constraint.

Assuming the above modification of the robot clothing problem, we can find two
solutions to it now:

• the white shirt with the denim trousers and the sneakers, or
• the red shirt with the grey trousers and Cordovans.

Both above solutions satisfy the required and the strong constraint, the weak
constraint is violated. This is all right because we do not require satisfaction of all the
constraints now and the weak constraint is the weakest constraint in the problem.
Note also that if we change the preferences of the constraints, e.g. if we swap the
strong and the weak constraints, we may get a completely different solution (white-
denim-cordovans, white-blue-cordovans).

The idea of putting preferences to individual constraints is formalised in constraint
hierarchies that have been proposed first in [4] and further developed in [5]. In
constraint hierarchies, each constraint is labelled by a preference expressing the
strength of the constraint - we are speaking about the labelled constraint. Usually
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names like required, strong, medium, weak, and weakest are used to denote the
preferences. The preferences are totally ordered so we can map them to natural
numbers. Required constraints are mapped to level 0 and they must hold. The other
constraints are merely preferential/soft so their satisfaction is not required. The soft
preferential levels are mapped to positive natural numbers; the higher level number
indicates the weaker level.

A constraint hierarchy is a finite (multi)set of labelled constraints. Given a
constraint hierarchy H, H0 is a vector of required constraints in H in some arbitrary
order with their labels removed. Similarly, H1 is a vector of the strongest non-required
constraints in H etc. up to the weakest level Hn, where n is the number of non-
required levels in the hierarchy H. We put Hk  = ∅ for k>n. Recall, that if i<j then the
constraints in Hi are stronger (more preferred) than the constraints in Hj. We call the
sets Hj hierarchy levels.

A valuation for the set of constraints is a function that maps variables in the
constraints to elements in the domain D over which the constraints are defined. A
solution to the constraint hierarchy is a set of valuations for the variables in the
hierarchy such that any valuation in the solution set satisfies at least the required
constraints, i.e., the constraints in H0, and, in addition, it satisfies the non-required
constraints, i.e., the constraints in Hi for i>0, at least as well as any other valuation
that also satisfies the required constraints. In other words, there is no valuation
satisfying the required constraints that is better than any valuation in the solution set.
Formally:

S0 = { θ | ∀c∈H0  cθ holds }
S = { θ | θ∈S0 & ∀σ∈S0 ¬ better(σ,θ,H) },

where S0 is the set of valuations satisfying all the required constraints and S is the
solution set.

There is a number of reasonable candidates for the predicate better, which is called
a comparator. The comparator formally describes the idea that satisfaction of a
stronger constraint is strictly preferred to satisfaction of an arbitrary number of
weaker constraints. For example the locally-better comparator considers each
constraint individually and it can be defined by the following way:

locally-better(θ,σ,H) ≡def

∃k>0 ∀i∈{1,…,k-1} ∀c∈ Hi e(c,θ)=e(c,σ) &
∃c'∈Hk e(c',θ)<e(c',σ) & ∀c∈ Hk e(c,θ)�e(c,σ),

where e(c,θ) is an error function indicating how nearly a constraint c is satisfied for a
valuation θ (a lower number means better satisfaction of the constraint). There exist
other comparators like globally-better comparator that combines the errors of
individual constraint at each hierarchy level using weighted-sum, least-squares and
similar methods and then it compares the combined errors for two valuations.

Constraint hierarchies belong to the first and the most popular approaches handling
preferences in constraint systems. A survey of constraint hierarchy framework and
solving algorithms can be found in [1].
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4 Partial Constraint Satisfaction

Let us go back to the robot clothing problem from Section 2. If a woman solves a
similar problem and she finds that there is no matching wardrobe (which is usually
very surprising assuming that wardrobe of women is much larger than our robot's
wardrobe)1 then she immediately has a solution: “I need to buy a new shirt, shoes
etc.” In constraint terminology, it corresponds to enlarging a domain of some variable
so we can add new connections between new and old wardrobe and thus make the
problem solvable. Or we can use a “men's approach” that is based on combining less
elegant but existing wardrobe, e.g., we can decide that a white shirt goes with the
sneakers after all (Figure 2). In constraint terminology, this corresponds to enlarging
the domain of the constraint so again, we made the problem weaker and hopefully
solvable. In addition to above light problem weakening, there exist two strong
weakenings: we can decide to remove a constraint completely (e.g. do not care at all
about matching of the shirt and footwear) or we can remove a variable (e.g., do not
wear shoes).

Fig. 2. By weakening the problem via extending the constraint domain (the dashed line), we
make the robot clothing problem solvable (the bold lines indicate the solution).

In the above paragraph, we proposed four ways to weaken the constraint problem:

• enlarge the domain of a variable (add more values),
• enlarge the domain of a constraints (add more compatible tuples),
• remove the constraint from the problem,
• remove the variable from the problem.

Assume that the variable domain is defined as an unary constraint over the variable.
Then, enlarging the domain of the variable is equivalent to enlarging the domain of
the unary constraint over the variable. Moreover, if we enlarge the domain of the
constraint to full extend, i.e., all the tuples are feasible according to the constraint,
then the constraint does not restrict the solution - this is equivalent to removing the
constraint. Finally, removing all the constraints binding a given variable is equivalent
to removing the variable. Thus, we showed that the above ways of problem
weakening collapse to enlarging the domain of a constraint.

                                                       
1 Please do not blame the author from sexism, this is just to make reading more relaxed (the

role of man and woman in the above examples can be swapped, if the reader prefers it).
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By weakening the constraints we get alternative problems to the original problem.
Now instead of solving the original problem we can look for a solution of some
alternative problem. Naturally, we prefer this alternative problem to be close to the
original problem so we can declare the crisp solution of the alternative problem to be
the solution of the original problem. This idea has been formalised by Freuder and
Wallace in the concept of partial constraint satisfaction [11].

Let PS be a set of constraint satisfaction problems with a partial order, ≤, on PS
defined as follows: P1≤P2 iff the set of solutions to P2 is a subset of the set of solution
to P1. If P1≤P2 but the two sets of solutions are not equal, we will write P1<P2 and say
that P1 is weaker than P2. We call the pair (PS, ≤) a problem space. The problem
space can be obtained by considering all the ways of weakening the constraints in the
original problem by allowing additional consistent combinations of values - as we
described at the beginning of this chapter.

A partial constraint satisfaction problem (PCSP) can now be described more
formally by supplying the original constraint satisfaction problem P, a problem space
PS containing P, a metric on that space, and necessary and sufficient solution
distances, N and S. A solution to a partial constraint satisfaction problem is defined as
a problem P' from the problem space along with a solution to that problem where the
metric distance of P' from P is less than or equal to N. A solution is sufficient if the
metric distance is less than or equal to S; a solution is optimal if the metric distance of
P' from P is minimal over the problem space.

The metric compares the problems from PS. Ideally, we might like to define it in
terms of the partial order, i.e., the distance between P and P' equals to the number of
solutions not shared by P and P'. Of course, computing such heuristic is not likely to
be easy so we may consider other heuristics as well. Another natural heuristic is a
count of the number of permitted value combinations not shared by the constraints of
P and P'.

Partial constraint satisfaction is a generic framework for solving over-constrained
problems but it can be also applied to solving hard problems where it is easier to find
a solution of some relaxed alternative problem. Alternatively, PCSP can be seen as a
generalisation of constraint satisfaction optimisation problem where the quality of the
solution is measured by some objective function. In facts, the techniques used for
solving PCSP, like branch and bound and local consistency count [11] are derived
from the techniques applied to solving optimisation problems.

5 Valued Constraint Satisfaction

While partial constraint satisfaction defines the solution of the problem via weakening
the problem, various other extensions of the original constraint satisfaction framework
associates some valuation (usually a number) to each constraint. These extensions use
a specific mathematical operator (+, max, etc.) to aggregate constraint violations. In
[14] Schiex, Fargier, and Verfaillie proposed a generic framework that, rather than
choosing a specific set for expressing valuations and a specific operator, uses an
ordered commutative monoid. The valuations are taken from the set of the monoid,
combined using its operator and compared using the order. The other frameworks can
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then be specified by choosing a particular monoid as we show later in this chapter
(Table 1).

To express the fact that the constraint may eventually be violated, the valued CSP
annotates each constraint with a valuation taken from a set of valuations E equipped
with the valuation structure (E,⊗,>,⊥,T). E is set of valuations totally ordered by >,
with a minimum element ⊥ and maximum element T. ⊗ is a commutative, associative
binary operation on E with unit element ⊥ (⊥⊗a=a), absorbing element T (T⊗a=T)
and preserving monotonicity (a≥b ⇒ a⊗c ≥ b⊗c). The ordered set E allows different
levels of constraint violations to be expressed. The element T corresponds to
unacceptable violation, i.e., to express hard constraints. The element ⊥ corresponds to
complete satisfaction.

Let C be a set of constraints in the problem and ϕ be a mapping of the constraints
to E, i.e. ϕ: C→E. ϕ(c) is called a valuation of the constraint c. The valuation of a
particular assignment A of values to variables can be acquired by aggregating the
valuations of violated constraints in C via ⊗:

)()( cAv
Cc

ϕ⊗=
∈

c  A violates

Note that commutativity and associativity guarantee that the valuation of an
assignment depends only on the set of the valuations of the violated constraints, and
not on the way they are aggregated.

The valued constraint satisfaction problem is defined formally by a classical
constraint satisfaction problem with the set of variables X, their domains D, and the
set of constraints C, a valuation structure (E,⊗,>,⊥,T), and a mapping ϕ from C to E.
The task is to find an assignment A with a minimal valuation v(A).

Valued CSP has been defined as an abstract framework to provide general solving
algorithms and properties [14]. Some other extensions of CSP can be described as an
instance of Valued CSP by choosing an appropriate algebraic structure (Table 1),
details of conversion can be found in [12,14].

Framework E ⊗ > ⊥ T
Classical CSP [7,8] {true,false} ∧ > true false
Weighted CSP [15] Ν ∪ {+∞} + > 0 +∞
Probabilistic CSP [9] 〈0,1〉 × < 1 0
Possibilistic CSP [13] 〈0,1〉 max > 0 1
Lexicographic CSP [10] Ν〈0,1) ∪ {T} ∪ >lex ∅ T

Table 1. Various (soft) constraint satisfaction frameworks can be expressed by using a
particular valuation structure in Valued CSP.
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6 Semiring-based Constraint Satisfaction

Semiring-based constraint satisfaction proposed by Bistarelli, Montanary, and Rossi
[2] is another meta-approach for modelling problems with preferences. Instead of
using the monoid, this framework uses a semiring structure, where the set of semiring
specifies the preference associated to each tuple of values. The two semiring
operations (+ and ×) then model constraint projection and combination respectively.

In semiring-based constraint satisfaction, each tuple in the constraint is marked by
a preference level expressing how good the tuple satisfies the constraint. The
preference level is taken from a set A equipped with the c-semiring structure
(A,+,×,0,1). A is a set of preferences, + is a commutative, associative, idempotent
(a+a=a) binary operation on A with the unit element 0 (0+a=a) and the absorbing
element 1 (1+a=1), × is a commutative, associative binary operation on A with the
unit element 1 (1×a=a) and the absorbing element 0 (0×a=0) and × distributes over +.

The multiplication operation × is used to combine constraints.  Let vars(c) be a set
of variables over which the constraint c is defined, δc be a mapping of all tuples over
vars(c) to A, i.e., δc(V) is a preference of the tuple V in the constraint c, and let U↓Y
be a projection of some tuple U to variables Y. Then we can describe a preference of
some tuple V by combining preferences of this tuple (its projection) in all the
constraints C:

( ))()( cvarsVVp c
Cc

↓δ×=
∈

To compare the preferences of tuples we need some ordering on A. This ordering can
be defined using the additive operation + in the following way: a≤b ⇔ a+b=b. If a≤b
then we say that b is better than a. Note that the relation ≤ defines a partial ordering
on A opposite to the total ordering used in the valued constraint satisfaction.

The semiring-based constraint satisfaction problem is defined formally by the c-
semiring structure (A,+,×,0,1), the set of variables X, their domains D, and the set of
constraints C described via δc. The task is to find an assignment V with the best
preference p(V).

Similarly to the valued CSP, it is possible to see many existing extensions of CSP
as instances of the semiring-based CSP over a certain semiring (Table 2); for details
look at [2,12].

Framework A + × 1 0
Classical CSP [7,8] {false,true} ∧ ∨ true false
Weighted CSP [15] Ν ∪ {+∞} min + 0 +∞
Probabilistic CSP [9] 〈0,1〉 max × 1 0
Possibilistic CSP [13] 〈0,1〉 min max 0 1
Fuzzy CSP [6] 〈0,1〉 max min 1 0
Lexicographic CSP [10] Ν〈0,1) ∪ {T} maxlex ∪ ∅ T

Table 2. Various (soft) constraint satisfaction frameworks can be expressed as an instance of
the semiring-based CSP.
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Both semiring-based constraint satisfaction (SCSP) and valued constraint satisfaction
(VCSP) are meta-frameworks based on some generic algebraic structure to describe
preferences, costs, etc. There are two main differences between them:

• VCSP annotates constraints while SCSP puts preferences to individual tuples,
• VCSP works with a total order of preferences while SCSP uses a partial order.

If a total order of preferences is assumed then the frameworks can be converted each
to another. A deep comparison of Semiring-based CSP and Valued CSP can be found
in [3].

7 Are we ready for soft constraints?

In the paper we survey four generic models dealing with soft constraints, namely
hierarchical, partial, valued, and semiring-based constraint satisfaction. Valued and
semiring-based constraint satisfaction frameworks have been proposed for discrete
(finite) domains only and so the partial constraint satisfaction. The idea of problem
weakening in partial constraint satisfaction can be extended to infinite domains as
well but we are not aware about any work on such extension. The constraint
hierarchies are independent on domains and they are mostly applied to domains of
real numbers.

There exist many other models that can be seen as instances of the above generic
frameworks, like fuzzy [6], lexicographic [10], weighted [15], probabilistic [9], or
possibilistic [13] constraint satisfaction (for a survey see [12]). Thus, the users have a
broad range of models of soft constraints to choose from. The question is: “Do the
users really use the soft constraints?” If we look at the main stream of today constraint
satisfaction, the answer is probably no. The focus of constraint community is in
solving large-scale combinatorial (optimisation) problems and in integration with
other techniques like the methods of operations research. In fact the only alive, i.e.,
still being developed frameworks of soft constraints are constraint hierarchies and
semiring-based constraint satisfaction.

In our opinion, the main reason for lukewarm acceptance of models for soft
constraints is poor efficiency of the solving algorithms. The constraint hierarchy
solvers are not incremental (after adding a new constraint, the solution must be in
general recomputed from scratch) and the efficient algorithms for finite domain
constraint hierarchies are still under development. The semiring-based solvers are
close to optimisation algorithms and modelling using semiring-based constraints is
not very practical due to necessity of adding preference to each tuple. Finally, the soft
constraints are not included in any leading constraint packages like ILOG Solver,
SICStus Prolog, or ECLiPSe.

Currently, it seems that the users solving problems with preference constraints turn
attention to modelling such problems as optimisation problems with penalties etc.
This is a pragmatic approach based on strong results of optimisation community so
we believe that a closer integration of optimisation technology and soft constraints
may be a good way of future development. Using optimisation techniques together
with soft constraint propagation may improve efficiency both of optimisation and soft
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constraint solvers. Moreover, in addition to optimisation problems the soft constraints
frameworks deal with uncertainty, vagueness, or imprecision so the same solving
algorithms for soft constraints can be applied to these problems as well.
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