
419

COMBINATORICS IN LOGIC
PROGRAMMING: IMPLEMENTATIONS

AND APPLICATIONS

Toshinori MUNAKATA1, Roman BARTÁK2

1Computer and Information Science Department,
Cleveland State University, Cleveland, Ohio 44115, USA

E-mail: t.munakata@csuohio.edu

2Department of Theoretical Computer Science and Mathematical
Logic,

Charles University, Praha, Czech Republic
E-mail: bartak@kti.mff.cuni.cz

Abstract

This paper presents a new intelligent computing approach for combi-

natorics problems by incorporating logic programming. Permutations,

one of the most common and basic topics in combinatorics, appear in

many problems in science, engineering, and business. Applications of

permutations and other combinatorics problems are briefly reviewed.

Implementation of permutations is presented in Prolog, the standard lan-

guage of logic programming. Time complexity analysis and experimen-

tal results of running the program are also discussed. The program is

optimal in terms of the order of its complexity. Applications of the tech-

nique to various domains as well as to specific problems such as the

traveling salesman are discussed.

Keywords: intelligent combinatorics problems, logic programming

implementation

1 Introduction

Combinatorics, or combinatorial theory, is a major mathematics branch

that has extensive applications in many fields. They include engineering, com-

puter science, natural and social sciences, biomedicine, operations research,

Int. J. IT&IC, 2006, Vol.1, No.2, 419-428

420 T. Munakata and R. Barták

and business [5]. Particular areas that have extensive applications of com-

binatorics such as permutations and combinations include: communication

networks, cryptography and network security; computer architecture; elec-

trical engineering; computational molecular biology; languages both natural

and computer; pattern analysis; scientific discovery; databases and data min-

ing; scheduling problems in operations research; and simulation. Other areas

of applications include: complexity analysis, recursion, games, and statistical

mechanics.

The most common scenario is that many real world problems are mathe-

matically intractable. In these cases, combinatorics techniques are needed to

count, enumerate, or represent possible solutions in the process of solving ap-

plication problems. Generation of combinatorial sequences has been studied

extensively because of the fundamental nature and the importance in practi-

cal applications. Most combinatorics algorithms and programs, however, have

employed classical, non-intelligent approaches. For advanced combinatorics

problems, intelligent computing becomes necessary, and this is the major fo-

cus of this paper.

Logic programming has been playing an important role in intelligent com-

puting. With much simplification, an abstraction of the human intelligence

process is logic, and its computer realization is logic programming. Logic pro-

gramming has been applied widely to every domain of intelligent computing,

including knowledge-based systems, machine learning, data mining, scientific

discovery, natural language processing, compiler writing, symbolic algebra,

circuit analysis, relational databases, image processing, and molecular biol-

ogy. It is one of the best tools to work on any form of intelligent computing,

and this is why we integrate logic programming with combinatorics problems.

In the following, we discuss how the basic generating problems in combina-

torics can be implemented in logic programming, especially in Prolog. Real

world hard combinatorics problems are discussed to illustrate the usefulness

of the logic programming approach.

2 Combinatorics Implementation in Logic Program-
ming

In the following, Prolog implementation for permutations is presented that

generates all possible elements (permutations). If only partial elements are

required, they can be generated by placing the screening conditions within

or outside the programs. Previously, Prolog solutions for only a special case

421COMBINATORICS IN LOGIC PROGRAMMING: IMPLEMENTATIONS. . .

of permutations of n items taken from a pool of n (rather than more general r,

where r ≤ n) items, has been reported. Other common combinatorics problems

can be implemented and analyzed in similar ways. These problems include:

permutations with item repetitions; combinations; and combinations with item

repetitions. For practical applications, these programs can readily be integrated

into other Prolog programs. A reader who is also interested in dealing with sets

in Prolog may refer to [6], [7].

The program described here generates permutations in lexicographic order.

For example, in lexicographic order, permutations of (1, 2) will be (1, 2), (2, 1),

rather than (2, 1), (1, 2). Usually lexicographic is the most convenient way of

organizing permutations or combinations. The term "complexity" refers to

time complexity in the following.

2.1 Preliminaries

Representation of items (elements)

Generally, items can be represented in various ways such as [adams, brown,

carter], or simply [a, b, c] or [1, 2, 3]. The programs in this article work for

any form of item representation. We use the letter representation of [a, b, ...]

for illustration.

Utility procedures

The following two basic procedures will be used.

% deletex(L, X, L1) deletes element X from L giving L1.

% e.g., deletex([a, b], b, [a]).

deletex([X | Lt], X, Lt).
deletex([X | Lt], Y, [X | Ls]) :- deletex(Lt, Y, Ls).

% addx(LL, X, LLa, LL1) first inserts element X at the beginning

% of every element list of LL then this resulting list is appended

% by LLa giving LL1. e.g., addx([[a, b], [c, d]], x,

% [[e, f], [g, h]], [[x, a, b], [x, c, d], [e, f], [g, h]]).

addx([], _, LLa, LLa).

addx([L | LLt], X, LLa, [[X | L] | LL1]) :- addx(LLt, X, LLa, LL1).

422 T. Munakata and R. Barták

In the following, although standard definitions of nPr is the number of

permutations, we use this expression as an "icon" to represent permutations
themselves (e.g., [[1, 2], [2, 1]]).

2.2 nPr: Permutations, R Items out of N Items

The following program generates list LL of sublists, where each sublist is
a permutation of R items taken at a time from a pool L of N items. We recall
R ≤ N. A special case of nPr, where N = R, i.e., nPn is a common combina-
torics problem whose solutions are found in Prolog books [1], [4]. In the next
section we will show that the complexity of procedure nPr(L, R, LL) is O(n! /
(n – R)!) = O(nPR). Hence, the order of the complexity is optimal.

% nPr(L, R, LL) generates permutations of elements of L, taken R
% elements at a time giving LL.
% e.g., nPr([a, b], 2, [[a, b], [b, a]]).

nPr(_, 0, [[]]).
nPr(L, R, LL) :- R >= 1, permsub(L, L, R, LL).

% permsub(Ls, L, R, LL), where Ls is a subset of L, generates all
% permutations of R elements starting with an element in Ls followed
% by all permutations of length R - 1 consisting of the remaining
% elements in L, giving LL. e.g.,
% permsub([b, c], [a, b, c], 2, [[b, a], [b, c], [c, a], [c, b]]).

permsub([], _, _, []).
permsub([X | Lt], L, R, LL) :- R1 is R - 1, deletex(L, X, L1),
permsub(Lt, L, R, LL2), addx(LL1, X, LL2, LL).

3 Complexity Analysis

We will determine the time complexity of procedure nPr(L, R, LL) as

f (n, R), where n = |L|. When nPr(L, R, LL) is called, it invokes the second

clause of permsub (except a trivial case of L = [] for which the first clause,

i.e., the boundary condition, of permsub is invoked). Within the second clause,

four procedures, deletex, nPr, permsub and addx, are called. The complexity

of deletex is O(n) as discussed before, and is negligible in comparisons with

the others. The complexity of addx O(|LL1|) is, as we will see soon, at most

the complexity of the nPr call and it can be included as a part of nPr. This

leaves only two recursive calls, nPr and permsub within the second clause of

permsub.

423COMBINATORICS IN LOGIC PROGRAMMING: IMPLEMENTATIONS. . .

Let us use notation of nPr{n, R, _} and permsub{n, n, R, _} to repre-

sent the list sizes or magnitudes of the arguments. For example, n and R in

nPr{n, R, _} represent n = |L| and R = R in an nPr(L, R, LL) call. When nPr{n,

R, _} is invoked at the beginning, it calls the second clause of permsub{n, n,

R, _}. In turn, nPr{n – 1, R – 1, _} and permsub{n – 1, n, R, _} are re-

cursively called. When we draw a search tree for nPr{n, R, _} and focus

only on permsub for the moment, the branch extends as permsub{n, n, R, _},

permsub{n - 1, n, R, _}, . . . , permsub{0, n, R, _}. The number of nodes so far

is n + 2, which consists of n – 1 permsub nodes plus one nPr{n, R, _} at the

root. We note that each of these permsub calls, except the last call permsub{0,

n, R, _}, invokes nPr{n – 1, R – 1, _}, that is, there are a total of n nPr{n – 1,

R – 1, _} invocations in the search tree. This leads to the following recurrence

equation for f (n, R) as the number of nodes in the search tree.

f (n,R) = n ∗ f (n − 1,R − 1) + (n + 2), f (_, 0) = 1. (1)

The boundary condition corresponds to the first clause of nPr. The last two

terms of the right hand side, n + 2, contribute at most the same as the first term

to determine the order of the complexity. Hence, it is sufficient to consider the

following homogeneous version of the recurrence equation for our purpose.

f (n,R) = n ∗ f (n − 1,R − 1), f (_, 0) = 1. (2)

This equation can be solved as

f (n,R) = n ∗ f (n − 1,R − 1) = ... = n(n − 1)...(n − R + 1) ∗ f (n − R, 0)

= n!/(n − R)! =n PR. (3)

That is, the complexity of procedure nPr(L, R, LL) is O(n! / (n – R)!) =

O(nPR). The last expression nPR is the number of permutations, R items taken

at a time from n items, and not the Prolog procedure nPr. This is a reasonable

consequence since permutations are generated one by one by the program and

there are nPR permutations all together. We also note that the complexity of

addx O(| LL1 |) is at most the complexity of the nPr recursive call and the addx

call can be included as a part of the nPr call.

4 Experimental Experience

Figure 1 shows the experimental test result of running time to compute

nPr by employing two approaches called “classic” and “findall”. The for-

mer is the program discussed in Section 2 which generates all permutations at

424 T. Munakata and R. Barták

once. The latter is a straightforward permutation generator based on the Pro-

log built-in procedure findall. Findall is used to collect all permutations by

repeated calling of the code producing one permutation at time (and the next

permutation upon backtracking). For each value of n = 1 to 9, nPr is computed

for r = 1 to n. For example, 9Pr for r = 1 to 9 took about 1 second for the clas-

sic program. The graph in Figure 1 clearly demonstrates that the classic is

more efficient than the findall approach and that the efficiency gap expands as

n increases. Hence, it is useful to have a dedicated code for generating all per-

mutations rather than re-using the code producing a single permutation at time.

The experiment was performed on a 1.7 GHz PC with a Mobile Intel Pentium

4-M processor and 768 MB RAM running Windows XP Professional. The

SICStus Prolog 3.8.7 compiler was employed. The experimental time for the

classic is close to that expected from our complexity analysis in the previous

section.

Figure 1. Experimental computing time for nPr. Time in seconds represents runtime

for nPr, r = 1 to n, for each value of n = 1 to 9, employing two programs, the classic

given in Section 2, and the standard procedure findall

425COMBINATORICS IN LOGIC PROGRAMMING: IMPLEMENTATIONS. . .

5 Integrating Logic Programming with Application
Problems of Permutations and Combinations

Most combinatorics algorithms and programs have been employing tra-

ditional and non-intelligent approaches. For advanced combinatorics prob-

lems, intelligent computing becomes necessary. They include problems with

complex constraints that cannot be easily implemented in the traditional ap-

proaches. In other cases solutions may require the use of background knowl-

edge or inference processes. Logic programming is a typical approach to im-

plement these intelligent computing. Having described how to implement the

basic combinatorics problem in Prolog, we will briefly explain how some com-

binatorics problems may require intelligent computing, particularly in terms

of logic programming. While the concept can be applied to any combinatorics

problems, we select well known, computationally hard examples.

5.1 Permutations

The traveling salesman problem (TSP) is an NP-complete, famous opti-

mization problem for permutations [2]. We are given n cities and a distance

matrix D = [di j], where di j is the distance between city iand city j. The prob-

lem is to determine the order of the cities to be visited, i.e., a permutation of

1 through n, expressed as π(1), ..., π(n), that minimizes the total distance of a

tour, i.e., Σn−1
i=1

dπ(i),π(i+1) + dπ(n),π(1). The last term indicates that the tour must

end at the originating city. The TSP and its variants have diverse practical ap-

plications such as vehicle routing, PCB design, and X-ray crystallography. The

TSP has been chosen as a popular bench mark problem to test the effectiveness

of many new techniques. More than 1700 related papers on the TSP and its

variants have been published during the five years preceding 2002 [3]. The

current techniques can be divided into two categories. One is the exhaustive

search and its improvements such as dynamic programming and branch-and-

bound algorithms. Optimal solutions are often guaranteed for these techniques.

The other category includes newer techniques such as the Hopfield-Tank neu-

ral network model and genetic algorithms [8]. Typically optimal solutions are

not guaranteed for the techniques in the second category. For either category,

particularly for the first, generation of permutations is necessary as a part of

seeking solutions.

Extensions and variants can be in many forms with practical implications.

There may be preferred sequences of cities in addition to minimizing the total

426 T. Munakata and R. Barták

distance. There may be different priorities on the cities to be visited. For ex-

ample, an electric utility company may need efficient scheduling for vehicle

routing for, say, 20 trucks for repair/maintenance work in a city. This type of

problem is very common for daily execution in many industries such as trans-

portation in the real world. The company needs to determine the most efficient

routing of points within the city for each truck in the dynamically changing en-

vironment. There may be preferred sequences of work points because, e.g., it

may be more efficient to perform the same type of work consecutively. For ex-

ample, if City C is followed by D, then E and F must or must not follow D, and

so on. If these conditions are relatively simple, one might be able to implement

them by manipulating the distance matrix. But when the conditions become

complex, it would be impossible to solve the problem by simply manipulating

the distance matrix. There may be different priorities on the points because

their urgencies are different, e.g., emergency calls, minor repairs, and routine

maintenance work. For such a problem, logic programming will be a powerful

tool. These conditions can be expressed in terms of Prolog and imbedded in

the permutation program discussed earlier. For example, the condition: "if C
is followed by D, then E and F must not follow D" may be expressed in form

of "C, D, NOT (E, F)." Prolog implementation of the TSP has been discussed

in the literature [1], [4], [10]. Le gives a Prolog program that determines a per-

mutation of cities to be visited and an optimal total distance given a distance

matrix. The types of additional conditions discussed above such as preferred

sequences can be incorporated into such a program.

The same concept for the TSP can be applied to many other sequencing

problems. The job scheduling problem is another NP-complete, famous op-

timization problem for permutations. We are given n jobs and corresponding

processing time, pi, i = 1, n, and m machines Mi, i = 1, m. The problem is

to determine the order and assignments of the jobs to the machines so that the

total processing time is minimized. Again, there are many variants of the prob-

lem, reflecting the popularity in the real world. The quantities involved can be

either static or dynamic; or deterministic or probabilistic. Another variant is

the tardiness problem, where the total penalty for tardiness is to be minimized.

As an extension as in the case of the TSP, we can impose additional conditions

such as, if job C is followed by job D, then jobs E and F must not follow job

D, and so on. This is another example where logic programming may prove

to be useful to solve the problem. In turn, these techniques can be applied to

specific domains such as communication networks and computer architecture

discussed earlier.

427COMBINATORICS IN LOGIC PROGRAMMING: IMPLEMENTATIONS. . .

5.2 Combinations

Although, the Prolog program for combinations is not presented in this pa-

per, it can be written similarly. The maximum independent set problem is an

NP-complete, well known optimization problem for combinations. An inde-

pendent set in a graph G = (V , E), where V is the set of vertices and E is the set

of edges, is a set of vertices where no two vertices are adjacent. A maximum

independent set is an independent set whose cardinality is the largest among all

independent sets of a graph. It turns out that two other popular problems, the

maximum clique and vertex cover, are different versions of essentially the same

problem [2]. These problems have many real world applications including the

following: finding ground states of spin glasses with exterior magnetic field

and solving circuit layout design in VLSI circuits and printed circuit boards;

information retrieval, experimental design, signal transmission, and computer

vision; labeled pattern matching; PLA folding; and stereo vision correspon-

dence [9]. As in the cases of the hard permutation problems discussed above,

logic programming can be an effective tool for extensions of these combination

problems.

6 Conclusion

Combinatorics problems, such as permutations and combinations, have ex-

tensive applications and have mostly been studied by classical methods. This

article suggests intelligent computing approaches for advanced combinatorics

problems by employing logic programming. The approaches may involve pro-

cesses such as inference and the use of background knowledge. Future studies

include actual implementations and comprehensive experiments of these new

systems.

References

[1] Bratko I., 2001, Prolog Programming for Artificial Intelligence, 3rd, Ed.,

Addison-Wesley, Wokingham, England.

[2] Garey M.R., Johnson D.S., 1979, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W.H. Freeman, San Francisco.

[3] Jung S., Moon B.-R., 2002, Toward minimal restriction of genetic encoding
and crossovers for the two-dimensional Euclidean TSP, IEEE Transactions on

Evolutionary Computation, Vol.6, No.6, pp. 557–565.

428 T. Munakata and R. Barták

[4] Le T.V., 1993, Techniques of Prolog Programming with Implementation of Log-
ical Negation and Quantified Goals, Wiley, New York.

[5] Liu C.L., 1968, Introduction to Combinatorial Mathematics, Computer Science

Series, McGraw-Hill, New York, Chapter 1.

[6] Munakata T., 1992, Notes on implementing sets in Prolog, Communications of

the ACM, Vol.35, No.3, pp. 112–120.

[7] Munakata T., 1998, Notes on implementing fuzzy sets in Prolog, Fuzzy Sets and

Systems, Vol.98, No.3, pp. 311–317.

[8] Munakata T., 1998, Fundamentals of the New Artificial Intelligence: Beyond
Traditional Paradigms, Springer-Verlag, New York.

[9] Takefuji Y., 1992, Neural Network Parallel Computing, Kluwer Academic,

Boston, MA.

[10] WASP (Working group on Answer Set Programming), 2005, WASP-Showcase:

Knowledge-based planning,

http://www.kr.tuwien.ac.at/projects/WASP/planning.html

