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Abstract: Constraint-based scheduling is an approach for solving real-life scheduling 
problems by stating constraints over the problem variables. By providing generic 
constraint satisfaction techniques on one side and specialised constraints on the other 
side, constraint programming achieves a very good generality and efficiency and thus it 
becomes very popular in solving real-life combinatorial (optimisation) problems. In this 
paper we present some constraint satisfaction techniques used in constraint-based 
scheduling. Our goal is to introduce the technology to newcomers rather than to provide 
a deep survey of the area or to describe some new results there. Copyright © 2003 
IFAC. 

 
Keywords: scheduling algorithms, planning, constraint satisfaction 

 
 
 
 

1. INTRODUCTION 
 

Automated scheduling is a long-time studied subject 
in computer science, especially in operations 
research, and many fast scheduling algorithms for 
various problem classes have been proposed there 
(Brucker, 2001). The difficulty of this academic view 
of scheduling is that the problems like job-shop 
scheduling do not exist in reality. In real-life 
scheduling problems, neither the structure of the 
resources nor the structure of the tasks is 
homogenous and many side constraints must be 
assumed to model the problem (Barták, 2002). 
Constraint programming provides technology to 
model and solve such real-life problems. 
 
Scheduling problems arise in situations where a set 
of activities has to be processed by a limited number 
of resources in a limited amount of time. In general, 
the scheduling problem consists of resource 
allocation, i.e., assigning resources to activities, and 
resource scheduling, i.e. ordering of activities at each 
resource. Sometimes, a planning component is 
necessary to decide what activities should be 
scheduled (Barták, 2002). 
 
Activity is a core object of every scheduling problem. 
It requires some resource(s) for processing and some 
duration of processing. Specifying the earliest start 
time (release time) and/or the latest end time 
(deadline) can restrict further the position of the 
activity in time. In general, it is possible to describe 
time windows for processing the activity. Activities 
can also depend each on another, e.g., a given 

activity must be processed before another activity. 
The resources to which the activities are allocated 
impose other relations among the activities. Some 
resources can process just one activity at given time - 
they are called unary resources. In other resources, 
the number of activities processed at given time is 
limited by the capacity of the resource - we are 
speaking about general discrete resources or 
cumulative resources. Sometimes the activities must 
form batches in the resource, i.e., the parallel 
activities start and complete at the same times. The 
ordering of activities in the resource may be 
restricted by a special transition scheme with 
sequence dependent set-up times inserted between 
the activities (Vilím and Barták, 2002). Other 
resources, called reservoirs, can be both consumed 
and produced by the activities (Laborie, 2001). 
 
The scheduling task is to allocate activities to 
available resources and to time respecting all the 
constraints. Usually some objective function defines 
quality of the schedule so the goal is to minimise 
makespan (the end time of the latest activity), or to 
minimise tardiness (the lateness of the activity 
according to specified time) etc. 
 
Opposite to “academic” scheduling problems 
(Brucker, 2001), the real-life problems consist of the 
resources of several types with connections between 
the resources defined by the factory structure 
(Barták, 2002; Wallace, 1994). The resources are 
quite often unique so even alternative resources 
provide different capabilities for processing the 
activities and there are many side constraints. Also 



the objective function is usually more complex; 
typically the best profit is required. Such problems 
can be naturally described in terms of constraint 
satisfaction. 
 
In the paper we first describe the constraint 
satisfaction technology in general. Then we show 
how constraints can be applied to model scheduling 
problems. Finally, we present some special filtering 
algorithms and search strategies designed for 
scheduling problems. 
 
 
2. CONSTRAINT SATISFACTION AT GLANCE 

 
Constraint programming (CP) is a framework for 
solving combinatorial (optimisation) problems. The 
basic idea is to model the problem as a set of 
variables with domains (the values for the variables) 
and a set of constraints restricting the possible 
combinations of the variables’ values (Figure 1). 
Usually, the domains are finite and we are speaking 
about constraint satisfaction problems (CSP). The 
task is to find a valuation of the variables satisfying 
all the constraints, i.e., a feasible valuation. 
Sometimes, there is also an objective function 
defined over the problem variables. Then the task is 
to find a feasible valuation minimising or maximising 
the objective function. Such problems are called 
constraint satisfaction optimisation problems 
(CSOP). 
 
Note that modelling problems using CS(O)P is 
natural because the constraints can capture arbitrary 
relations. Opposite to frameworks like linear and 
integer programming, the constraints are not 
restricted to linear equalities and inequalities. The 
constraint can express arbitrary mathematical or 
logical formula, like (x2<y ∨ x=y). The constraint 
could even be an arbitrary relation that can be hardly 
expressed in an intentional form and a table is used to 
describe the feasible tuples (Barták, 2001). Moreover 
the constraints can bind variables with different even 
non-numerical domains, e.g. to restrict the length of a 
string by a natural number. 
 
 
 
 
 
 
Fig. 1. CSP consists of variables, their domains, and 

constraints. It can be represented as a constraint 
(hyper) graph. 

 
Constraint satisfaction technology must take in 
account the above described generality of the 
problem specification. Usually, a combination of 
search (enumeration) with constraint propagation is 
used; some other techniques, e.g., local search, can 
also be applied to solve problems with constraints. 
Even if many researchers outside CP put equality 

between constraint satisfaction and simple 
enumeration, the reality is that the core technology of 
CP is hidden in constraint propagation combined 
with sophisticated search techniques. Constraint 
propagation is based on the idea of using constraints 
actively to prune the search space. Each constraint 
has assigned a filtering algorithm that can reduce 
domains of variables involved in the constraint by 
removing the values that cannot take part in any 
feasible solution. This algorithm is evoked every 
time a domain of some variable in the constraint is 
changed and this change is propagated to domains of 
the other variables and so on (Figure 2). Hence the 
technique is called constraint propagation. 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Constraint propagation does domain reduction 

by repeated evoking of the filtering algorithms 
until a fix-point is reached. 

 
Notice that each constraint may have its own filtering 
algorithm so there is no difficulty to solve problems 
with very different constraints. The generic constraint 
propagation algorithm known under the notion of arc 
consistency takes care about the correct combination 
of the local filtering algorithms. On the other hand, 
this local view of the problem has the disadvantage 
of incomplete domain reduction. It means that some 
infeasible values may still sit in the domains of the 
variables and thus search (with backtracking) is 
necessary to find a complete feasible valuation of the 
variables. To reduce deficiency of local propagation, 
it is possible to group several constraints and to see 
this group as a special constraint called a global 
constraint. Instead of using local propagation over 
the set of constraints, it is possible to design a special 
filtering algorithm for the global constraint to achieve 
more efficient domain filtering, e.g. (Régin, 1994). 
 
The standard constraint satisfaction technique 
looking for feasible solutions can be extended to find 
out optimal solution. Usually a technique of branch-
and-bound is used there. First, some feasible solution 
is found and then, a next solution that is better than 
the previous solution is looked for etc. This could be 
done by posting a new constraint restricting the value 
of the objective function by the value of the objective 
function for the so-far best solution. 
 
A deep general view of constraint programming can 
be found in (Barták, 1998; Kumar, 1992; Tsang, 
1995). We will describe now how to apply CP to 
scheduling problems (Wallace, 1994). 
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3. CONSTRAINTS IN SCHEDULING 
 
Scheduling problems belong to the area of 
combinatorial optimisation problems so they can be 
naturally described as constraint satisfaction 
problems. To model the problem as CSP one needs to 
decide how to map the problem objects into variables 
and constraints. One of the traditional modelling 
approaches uses variables to describe the activities. 
In particular, there are three variables identifying the 
position of the activity in time, namely, the start time, 
the end time, and the processing time (duration). Let 
A be an activity, we denote these variables start(A), 
end(A), and p(A). We expect the domains for these 
variables to be discrete (e.g., natural numbers) where 
the release time and the deadline of the activity make 
natural bounds for them (and the time windows make 
the domains even more restricted). Note that if the 
processing time of the activity is constant then one 
variable is enough to locate the activity in time. We 
still prefer to use all three variables to simplify 
description of the constraints. 
 
The first constraint binds the time variables of each 
activity: start(A)+p(A)=end(A). Time dependencies 
between the activities can also be naturally described 
by constraints between the time variables. Assume 
that A must be processed before B, denoted A<<B, 
then we post the constraint end(A)≤start(B). In 
general, time dependencies between the activities can 
be described in the form: 

min_delay(A,B)≤ start(B)-end(A) ≤ max_delay(A,B). 

Notice that we put no restriction about the structure 
of the activities so arbitrary time dependencies can be 
modelled. 
 
If resource allocation is included in the problem then 
there is one more variable for the activity. This 
variable describes the resource to which the activity 
is allocated, we denote it resource(A). Assume that 
each resource has assigned a unique number. Then 
the domain of resource(A) consists of identifications 
for the resources to which the activity A can be 
allocated. This variable participates in the constraints 
that involve the resource, e.g., there could be a 
tabular constraint binding resource(A) and p(A) to 
describe different processing time of the activity A in 
different resources. 
 
When the activity is allocated to the resource, 
additional resource constraints are posted. In fact, 
these resource constraints can be posted earlier over 
the copies of the time variables and if the constraint 
is violated then the resource is removed from the 
resource(A) variable. Assume now that activities A 
and B are allocated to the same unary resource. 
Because no activity overlaps are allowed in unary 
resources we can post a disjunctive constraint: A<<B 
∨ B<<A, i.e., end(B)≤start(A) ∨ end(A)≤start(B). 
The propagation through this constraint works as 
follows: as soon as we know that start(A)<end(B) 

then we can deduce end(A)≤start(B) and vice versa. 
If there are n activities in the resource then we need 
O(n2) binary constraints of the above form. It is a 
known wisdom that propagation through disjunctive 
constraints is rather weak. Therefore special global 
constraints describing the resources are used (see 
next section). 
 
In the above paragraphs we gave some examples of 
the scheduling constraints. Recall that in the CSP 
framework one can combine arbitrary constraints so 
the user is allowed to use additional constraints 
specifying the properties of the resources and 
activities (Barták, 2002; Laborie, 2001). 
 
 
3.1 Domain filtering for scheduling 
 
In this section we present some filtering techniques 
for global constraints used in scheduling applications. 
Recall that the filtering algorithm reduces domains of 
the variables and it is evoked every time a domain of 
any involved variable is changed. 
 
One of the most popular scheduling global 
constraints is edge finding. We describe the version 
for unary resources but there exist variants for 
discrete resources (Baptiste and Le Pape, 1996) and 
batch resources as well (Vilím and Barták, 2002). 
The basic idea of edge finding is to identify an 
“edge” between the activity and the group of 
activities, in particular to find out if the activity must 
be processed before the set of activities (or after it). 
Assume that A is an activity and Ω is a set of 
activities that does not contain A. In unary resource 
the processing time for the set of activities equals to 
the sum of processing times of these activities: 

∑
Ω∈

=Ω
X

Xpp )()(  

Assume that processing of the activities from Ω∪{A} 
does not start with A. Then processing must start with 
some activity from Ω so the minimal start time is: 

)}({min))(min( Xstartstart
X Ω∈

=Ω  

If we add the processing time of Ω∪{A} to the 
minimal start time of Ω and we get the time after the 
maximal end time of Ω∪{A} then we know that the 
activity A can be processed neither inside nor after Ω 
(Figure 3). Thus, the activity A must start before Ω.  
 
Formally: 
 
min(start(Ω)) + p(Ω) + p(A) > max(end(Ω ∪ {A})) 

⇒ A<<Ω. 
 
A<<Ω means that A must be processed before every 
activity from Ω so it must be processed before any 
Ω'⊆Ω. We can use this information to decrease the 
upper bound for the end time of the activity A using 
the formula: 



end(A) ≤ min{ max(end(Ω')) - p(Ω') |  Ω'⊆Ω}. 
 
A similar rule can be constructed to deduce that A 
must be processed after Ω: 
 
min(start(Ω ∪ {A})) + p(Ω) + p(A) > max(end(Ω)) 

⇒ Ω<<A. 
 
The above edge finding rules form the core of the 
filtering algorithm reducing the bounds of the time 
variables. It may seem that this algorithm must 
explore all subsets Ω of the set of activities allocated 
to a given resource. Fortunately we can explore only 
the sets defined by pairs of activities called tasks 
intervals (Baptiste and Le Pape, 1996) so the time 
complexity of the edge finding filtering algorithm is 
O(n3) where n is the number of activities allocated to 
the resource. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Edge finding can deduce that the activity A 

must be processed before the activities B and C 
(processing time is in parentheses). Notice that 
binary disjunctive constraints deduce nothing 
there. 

 
For discrete resources with capacity greater than one 
we can use a graph of necessary aggregated demand 
to deduce some domain filtering. This graph is 
computed from the activities A such that 
max(start(A))<min(end(A)), i.e., the activity A will 
consume the resource in the interval 
max(start(A))..min(end(A)). By aggregating demands 
of such activities we get necessary demand for each 
time point. Now for each activity we can find out 
time intervals where there is not enough capacity for 
processing this activity. Using these intervals we can 
reduce the time bounds for the activity (see Figure 4). 
Time complexity of this algorithm is O(n), where n is 
the number of activities processed by the resource. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Necessary aggregated demand is used for 

reduction of time bounds using the intervals 
where there is not enough capacity for 
processing the activity. Every activity 
contributes to necessary demand in times when 
it must be processed (a shadow rectangle). 

 
So far we presented the filtering algorithms based on 
absolute timing of activities. Laborie (2001) 
proposed a filtering method based on relative 
ordering of activities. In particular, his method is 
useful for modelling cumulative resources called 
reservoirs. The reservoir is a resource that can store 
some item: it has an initial level of the item and a 
maximal capacity. Activities either consume the item 
from reservoir (enough quantity must be present) or 
they store the item there (capacity cannot be 
exceeded). Assume now that we have a reservoir 
with capacity two that is full at the beginning. We 
have three consuming activities A, B, and C such that 
A<<B<<C, each activity consumes one item. There 
is one more activity D that stores one item. Because 
the reservoir is full at the beginning, we can deduce 
that D cannot be processed first so A<<D (otherwise 
the capacity is exceeded). Because the initial level of 
the reservoir is two and A, B, and C require together 
three items, there must some storing activity before 
C, thus D<<C (Figure 5). 
 
 
 
 
 
 
 
 
Fig. 5. Partial ordering of activities (arcs) can be 

extended (dashed arcs) by using information 
about resource capacity and consumed (-) and 
produced (+) quantities. Resource capacity and 
initial level is two here. 
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3.2 Search and scheduling strategies 
 
When the scheduling problem is formulated as a 
constraint satisfaction problem, we can use the 
standard enumeration techniques. They are based on 
trying a value for the variable, i.e., posting a 
constraint in the form X=h. If the new problem has 
no solution, this constraint is substituted by the 
constraint X≠h and the enumeration continues. Such 
technique is useful for resource allocation, i.e., 
assigning values to resource variables. Moreover 
because the real meaning of the variable is known, 
we can use some variable and value selection 
heuristics derived from the original problem. For 
example the activity with the minimal number of 
alternative resources should be allocated first (the 
first-fail principle) and it should be allocated to the 
least used resource (succeed-first principle). 
 
For resource scheduling, i.e., deciding the time of the 
activity, it is more useful to use a different branching 
scheme, namely X<h and X≥h. In particular, we can 
decide about ordering of two non-yet ordered 
activities. First, we can post the constraint A<<B, 
i.e., end(A)≤start(B). If scheduling fails then we post 
a negation of that constraint. It could be B<<A, if 
both activities cannot run in parallel, or ¬ A<<B 
otherwise. The question is what activities should be 
ordered first. Again, we can use experience from 
solving scheduling problems saying that the 
bottleneck resources should be scheduled first. The 
user can identify such resources or they can be 
identified automatically. First let us define the slack 
of the set of activities Ω using the following formula: 
 

max(end(Ω)) - min(start(Ω)) - p(Ω). 
 
Then, the resource with the minimal slack for any 
subset of the activities processed by that resource is 
scheduled first. We can use the same idea to select 
the pair of activities to be ordered first. The slack for 
the pair of activities A and B is: 
 

max{ max(end(A)) - min(start(B)), 
max(end(B)) - min(start(A)) } - p({A,B}). 

 
Now, the pair of activities with the minimal slack is 
selected for ordering. Notice that the slack for two 
non-yet ordered activities consists of slacks for both 
orderings B<<A and A<<B. The ordering leading to 
a bigger slack is tried first. 
 
In the above paragraphs we presented some heuristics 
that guide scheduling. These heuristics are part of a 
general search framework that could be a simple 
depth-first search with backtracking. Nevertheless, 
there exist more advanced search frameworks like 
Limited Discrepancy Search (Harvey and Ginsberg, 
1995) that proved to be very efficient especially in 
scheduling problems. Limited Discrepancy Search 
(LDS) attempts to solve heuristic violations. The 

basic idea of LDS follows two observations. First, 
the heuristic is less reliable in the earlier part of the 
search tree and as search proceeds, more information 
for a better heuristic decision is available. Second, 
the number of heuristic violations is usually small 
(good heuristics are reliable in most cases). LDS 
changes the search strategy in such a way that 
allowed heuristic violations – discrepancies – are 
increasing as search progresses. During the first run, 
LDS follows the heuristic. In case of failure, LDS 
explores the branches with at most one heuristic 
violation starting with the branches where the 
heuristic is violated in the earlier part of the search 
tree. In case of failure, the number of allowed 
discrepancies is increased again and so on (Figure 6). 
By changing the ordering of search branches, LDS 
increases chances to find a solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. LDS explores the branches with minimal 
discrepancies first. It also prefers the branch where 
the discrepancy is located in an earlier part. In the 
figure, the heuristic proposes to go left. 
 
A short survey on applying constraints to scheduling 
can be found in (Wallace, 1994). The books (Baptiste 
et al., 2001; Dorndorf, 2002) cover the most widely 
used constraint-based scheduling techniques. 
 
 

4. CONCLUSIONS 
 
Constraint-based scheduling is a glass-box 
framework for solving scheduling problems. It has 
two major advantages over the existing scheduling 
approaches: clarity (thus glass-box) and generality of 
the models. Moreover, it provides generic solution 
techniques of constraint satisfaction that can be 
further tuned for scheduling problems by using 
special filtering algorithms and scheduling strategies. 
Despite its “young age”, constraint-based scheduling 
proved itself to be an efficient tool for solving real-
life scheduling problems. In fact, one of the leading 
companies in the optimisation industry, ILOG, is 
using constraint satisfaction as a core technology in 
their products. 



 
ACKNOWLEDGEMENTS 

 
The author is supported by the Grant Agency of the 
Czech Republic under the contract 201/01/0942. 
 
 

REFERENCES 
 
Baptiste, P. and Le Pape, C. (1996). Edge-finding 

constraint propagation algorithms for 
disjunctive and cumulative scheduling. In 
Proceedings of the Fifteenth Workshop of the 
U.K. Planning Special Interest Group. 

Baptiste, P., Le Pape, C., Nuijten, W. (2001). 
Constraint-based Scheduling: Applying 
Constraints to Scheduling Problems. Kluwer 
Academic Publishers, Dordrecht. 

Barták, R. (1998). On-line Guide to Constraint 
Programming, Prague, 
http://kti.mff.cuni.cz/~bartak/constraints/ 

Barták, R. (2001). Filtering Algorithms for Tabular 
Constraints, in Proceedings of CP2001 
Workshop CICLOPS, 168-182. Paphos, Cyprus. 

Barták, R. (2002). Visopt ShopFloor: On the Edge of 
Planning and Scheduling. In Proceedings of 
CP2002, 587-602. LNCS 2470, Springer 
Verlag, Ithaca. 

Brucker P. (2001). Scheduling Algorithms. Springer 
Verlag. 

Dorndorf U. (2002). Project Scheduling with Time 
Windows: From Theory to Applications. 
Physica Verlag, Heidelberg 

Harvey W.D. and Ginsberg, M.L. (1995). Limited 
Discrepancy Search. In Proceedings of 
International Joint Conference on Artificial 
Intelligence,  607-613. 

Kumar, V. (1992). Algorithms for Constraint 
Satisfaction Problems: A Survey, AI Magazine 
13(1): 32-44. 

Laborie P. (2001). Algorithms for Propagating 
Resource Constraints in AI Planning and 
Scheduling: Existing Approaches and New 
Results. In Proceedings of 6th European 
Conference on Planning, 205-216. Toledo, 
Spain. 

Régin J.-Ch. (1994). A filtering algorithm for 
constraints of difference in CSPs. In 
Proceedings of 12th National Conference on 
Artificial Intelligence. 

Tsang, E. (1995). Foundations of Constraint 
Satisfaction. Academic Press, London. 

Vilím P. and Barták, R. (2002). Filtering Algorithms 
for Batch Processing with Sequence Dependent 
Setup Times. In Proceedings of The Sixth 
International Conference on Artificial 
Intelligence Planning and Scheduling, 312-320. 
AAAI Press, Toulouse, France. 

Wallace, M. (1994). Applying Constraints for 
Scheduling. In Constraint Programming, 
Mayoh B. and Penjaak J. (eds.), NATO ASI 
Series, Springer Verlag. 


