
CONSTRAINT-BASED SCHEDULING: AN INTRODUCTION FOR NEWCOMERS

Roman Barták

Charles University in Prague, Institute for Theoretical Computer Science
Malostranské nám. 2/25, 118 00, Praha 1, Czech Republic

bartak@kti.mff.cuni.cz

Abstract: Constraint-based scheduling is an approach for solving real-life scheduling
problems by stating constraints over the problem variables. By providing generic
constraint satisfaction techniques on one side and specialised constraints on the other
side, constraint programming achieves a very good generality and efficiency and thus it
becomes very popular in solving real-life combinatorial (optimisation) problems. In this
paper we present some constraint satisfaction techniques used in constraint-based
scheduling. Our goal is to introduce the technology to newcomers rather than to provide
a deep survey of the area or to describe some new results there. Copyright © 2003
IFAC.

Keywords: scheduling algorithms, planning, constraint satisfaction

1. INTRODUCTION

Automated scheduling is a long-time studied subject
in computer science, especially in operations
research, and many fast scheduling algorithms for
various problem classes have been proposed there
(Brucker, 2001). The difficulty of this academic view
of scheduling is that the problems like job-shop
scheduling do not exist in reality. In real-life
scheduling problems, neither the structure of the
resources nor the structure of the tasks is
homogenous and many side constraints must be
assumed to model the problem (Barták, 2002).
Constraint programming provides technology to
model and solve such real-life problems.

Scheduling problems arise in situations where a set
of activities has to be processed by a limited number
of resources in a limited amount of time. In general,
the scheduling problem consists of resource
allocation, i.e., assigning resources to activities, and
resource scheduling, i.e. ordering of activities at each
resource. Sometimes, a planning component is
necessary to decide what activities should be
scheduled (Barták, 2002).

Activity is a core object of every scheduling problem.
It requires some resource(s) for processing and some
duration of processing. Specifying the earliest start
time (release time) and/or the latest end time
(deadline) can restrict further the position of the
activity in time. In general, it is possible to describe
time windows for processing the activity. Activities
can also depend each on another, e.g., a given

activity must be processed before another activity.
The resources to which the activities are allocated
impose other relations among the activities. Some
resources can process just one activity at given time -
they are called unary resources. In other resources,
the number of activities processed at given time is
limited by the capacity of the resource - we are
speaking about general discrete resources or
cumulative resources. Sometimes the activities must
form batches in the resource, i.e., the parallel
activities start and complete at the same times. The
ordering of activities in the resource may be
restricted by a special transition scheme with
sequence dependent set-up times inserted between
the activities (Vilím and Barták, 2002). Other
resources, called reservoirs, can be both consumed
and produced by the activities (Laborie, 2001).

The scheduling task is to allocate activities to
available resources and to time respecting all the
constraints. Usually some objective function defines
quality of the schedule so the goal is to minimise
makespan (the end time of the latest activity), or to
minimise tardiness (the lateness of the activity
according to specified time) etc.

Opposite to “academic” scheduling problems
(Brucker, 2001), the real-life problems consist of the
resources of several types with connections between
the resources defined by the factory structure
(Barták, 2002; Wallace, 1994). The resources are
quite often unique so even alternative resources
provide different capabilities for processing the
activities and there are many side constraints. Also

the objective function is usually more complex;
typically the best profit is required. Such problems
can be naturally described in terms of constraint
satisfaction.

In the paper we first describe the constraint
satisfaction technology in general. Then we show
how constraints can be applied to model scheduling
problems. Finally, we present some special filtering
algorithms and search strategies designed for
scheduling problems.

2. CONSTRAINT SATISFACTION AT GLANCE

Constraint programming (CP) is a framework for
solving combinatorial (optimisation) problems. The
basic idea is to model the problem as a set of
variables with domains (the values for the variables)
and a set of constraints restricting the possible
combinations of the variables’ values (Figure 1).
Usually, the domains are finite and we are speaking
about constraint satisfaction problems (CSP). The
task is to find a valuation of the variables satisfying
all the constraints, i.e., a feasible valuation.
Sometimes, there is also an objective function
defined over the problem variables. Then the task is
to find a feasible valuation minimising or maximising
the objective function. Such problems are called
constraint satisfaction optimisation problems
(CSOP).

Note that modelling problems using CS(O)P is
natural because the constraints can capture arbitrary
relations. Opposite to frameworks like linear and
integer programming, the constraints are not
restricted to linear equalities and inequalities. The
constraint can express arbitrary mathematical or
logical formula, like (x2<y ∨ x=y). The constraint
could even be an arbitrary relation that can be hardly
expressed in an intentional form and a table is used to
describe the feasible tuples (Barták, 2001). Moreover
the constraints can bind variables with different even
non-numerical domains, e.g. to restrict the length of a
string by a natural number.

Fig. 1. CSP consists of variables, their domains, and

constraints. It can be represented as a constraint
(hyper) graph.

Constraint satisfaction technology must take in
account the above described generality of the
problem specification. Usually, a combination of
search (enumeration) with constraint propagation is
used; some other techniques, e.g., local search, can
also be applied to solve problems with constraints.
Even if many researchers outside CP put equality

between constraint satisfaction and simple
enumeration, the reality is that the core technology of
CP is hidden in constraint propagation combined
with sophisticated search techniques. Constraint
propagation is based on the idea of using constraints
actively to prune the search space. Each constraint
has assigned a filtering algorithm that can reduce
domains of variables involved in the constraint by
removing the values that cannot take part in any
feasible solution. This algorithm is evoked every
time a domain of some variable in the constraint is
changed and this change is propagated to domains of
the other variables and so on (Figure 2). Hence the
technique is called constraint propagation.

Fig. 2. Constraint propagation does domain reduction

by repeated evoking of the filtering algorithms
until a fix-point is reached.

Notice that each constraint may have its own filtering
algorithm so there is no difficulty to solve problems
with very different constraints. The generic constraint
propagation algorithm known under the notion of arc
consistency takes care about the correct combination
of the local filtering algorithms. On the other hand,
this local view of the problem has the disadvantage
of incomplete domain reduction. It means that some
infeasible values may still sit in the domains of the
variables and thus search (with backtracking) is
necessary to find a complete feasible valuation of the
variables. To reduce deficiency of local propagation,
it is possible to group several constraints and to see
this group as a special constraint called a global
constraint. Instead of using local propagation over
the set of constraints, it is possible to design a special
filtering algorithm for the global constraint to achieve
more efficient domain filtering, e.g. (Régin, 1994).

The standard constraint satisfaction technique
looking for feasible solutions can be extended to find
out optimal solution. Usually a technique of branch-
and-bound is used there. First, some feasible solution
is found and then, a next solution that is better than
the previous solution is looked for etc. This could be
done by posting a new constraint restricting the value
of the objective function by the value of the objective
function for the so-far best solution.

A deep general view of constraint programming can
be found in (Barták, 1998; Kumar, 1992; Tsang,
1995). We will describe now how to apply CP to
scheduling problems (Wallace, 1994).

X in [1,2,3,4,5]

X<Y

Y in [1,2,3,4,5]

Z in [1,2,3,4,5]

Z<X-2

X
<Y

X in [1,2,3,4,5]
Y in [1,2,3,4,5]
Z in [1,2,3,4,5]

X in [1,2,3,4]
Y in [2,3,4,5]
Z in [1,2,3,4,5]

X in [4]
Y in [2,3,4,5]
Z in [1]

X in [4]
Y in [5]
Z in [1]

Z<X-2

X
<Y

3. CONSTRAINTS IN SCHEDULING

Scheduling problems belong to the area of
combinatorial optimisation problems so they can be
naturally described as constraint satisfaction
problems. To model the problem as CSP one needs to
decide how to map the problem objects into variables
and constraints. One of the traditional modelling
approaches uses variables to describe the activities.
In particular, there are three variables identifying the
position of the activity in time, namely, the start time,
the end time, and the processing time (duration). Let
A be an activity, we denote these variables start(A),
end(A), and p(A). We expect the domains for these
variables to be discrete (e.g., natural numbers) where
the release time and the deadline of the activity make
natural bounds for them (and the time windows make
the domains even more restricted). Note that if the
processing time of the activity is constant then one
variable is enough to locate the activity in time. We
still prefer to use all three variables to simplify
description of the constraints.

The first constraint binds the time variables of each
activity: start(A)+p(A)=end(A). Time dependencies
between the activities can also be naturally described
by constraints between the time variables. Assume
that A must be processed before B, denoted A<<B,
then we post the constraint end(A)≤start(B). In
general, time dependencies between the activities can
be described in the form:

min_delay(A,B)≤ start(B)-end(A) ≤ max_delay(A,B).

Notice that we put no restriction about the structure
of the activities so arbitrary time dependencies can be
modelled.

If resource allocation is included in the problem then
there is one more variable for the activity. This
variable describes the resource to which the activity
is allocated, we denote it resource(A). Assume that
each resource has assigned a unique number. Then
the domain of resource(A) consists of identifications
for the resources to which the activity A can be
allocated. This variable participates in the constraints
that involve the resource, e.g., there could be a
tabular constraint binding resource(A) and p(A) to
describe different processing time of the activity A in
different resources.

When the activity is allocated to the resource,
additional resource constraints are posted. In fact,
these resource constraints can be posted earlier over
the copies of the time variables and if the constraint
is violated then the resource is removed from the
resource(A) variable. Assume now that activities A
and B are allocated to the same unary resource.
Because no activity overlaps are allowed in unary
resources we can post a disjunctive constraint: A<<B
∨ B<<A, i.e., end(B)≤start(A) ∨ end(A)≤start(B).
The propagation through this constraint works as
follows: as soon as we know that start(A)<end(B)

then we can deduce end(A)≤start(B) and vice versa.
If there are n activities in the resource then we need
O(n2) binary constraints of the above form. It is a
known wisdom that propagation through disjunctive
constraints is rather weak. Therefore special global
constraints describing the resources are used (see
next section).

In the above paragraphs we gave some examples of
the scheduling constraints. Recall that in the CSP
framework one can combine arbitrary constraints so
the user is allowed to use additional constraints
specifying the properties of the resources and
activities (Barták, 2002; Laborie, 2001).

3.1 Domain filtering for scheduling

In this section we present some filtering techniques
for global constraints used in scheduling applications.
Recall that the filtering algorithm reduces domains of
the variables and it is evoked every time a domain of
any involved variable is changed.

One of the most popular scheduling global
constraints is edge finding. We describe the version
for unary resources but there exist variants for
discrete resources (Baptiste and Le Pape, 1996) and
batch resources as well (Vilím and Barták, 2002).
The basic idea of edge finding is to identify an
“edge” between the activity and the group of
activities, in particular to find out if the activity must
be processed before the set of activities (or after it).
Assume that A is an activity and Ω is a set of
activities that does not contain A. In unary resource
the processing time for the set of activities equals to
the sum of processing times of these activities:

∑
Ω∈

=Ω
X

Xpp)()(

Assume that processing of the activities from Ω∪{A}
does not start with A. Then processing must start with
some activity from Ω so the minimal start time is:

)}({min))(min(Xstartstart
X Ω∈

=Ω

If we add the processing time of Ω∪{A} to the
minimal start time of Ω and we get the time after the
maximal end time of Ω∪{A} then we know that the
activity A can be processed neither inside nor after Ω
(Figure 3). Thus, the activity A must start before Ω.

Formally:

min(start(Ω)) + p(Ω) + p(A) > max(end(Ω ∪ {A}))

⇒ A<<Ω.

A<<Ω means that A must be processed before every
activity from Ω so it must be processed before any
Ω'⊆Ω. We can use this information to decrease the
upper bound for the end time of the activity A using
the formula:

end(A) ≤ min{ max(end(Ω')) - p(Ω') | Ω'⊆Ω}.

A similar rule can be constructed to deduce that A
must be processed after Ω:

min(start(Ω ∪ {A})) + p(Ω) + p(A) > max(end(Ω))

⇒ Ω<<A.

The above edge finding rules form the core of the
filtering algorithm reducing the bounds of the time
variables. It may seem that this algorithm must
explore all subsets Ω of the set of activities allocated
to a given resource. Fortunately we can explore only
the sets defined by pairs of activities called tasks
intervals (Baptiste and Le Pape, 1996) so the time
complexity of the edge finding filtering algorithm is
O(n3) where n is the number of activities allocated to
the resource.

Fig. 3. Edge finding can deduce that the activity A

must be processed before the activities B and C
(processing time is in parentheses). Notice that
binary disjunctive constraints deduce nothing
there.

For discrete resources with capacity greater than one
we can use a graph of necessary aggregated demand
to deduce some domain filtering. This graph is
computed from the activities A such that
max(start(A))<min(end(A)), i.e., the activity A will
consume the resource in the interval
max(start(A))..min(end(A)). By aggregating demands
of such activities we get necessary demand for each
time point. Now for each activity we can find out
time intervals where there is not enough capacity for
processing this activity. Using these intervals we can
reduce the time bounds for the activity (see Figure 4).
Time complexity of this algorithm is O(n), where n is
the number of activities processed by the resource.

Fig. 4. Necessary aggregated demand is used for

reduction of time bounds using the intervals
where there is not enough capacity for
processing the activity. Every activity
contributes to necessary demand in times when
it must be processed (a shadow rectangle).

So far we presented the filtering algorithms based on
absolute timing of activities. Laborie (2001)
proposed a filtering method based on relative
ordering of activities. In particular, his method is
useful for modelling cumulative resources called
reservoirs. The reservoir is a resource that can store
some item: it has an initial level of the item and a
maximal capacity. Activities either consume the item
from reservoir (enough quantity must be present) or
they store the item there (capacity cannot be
exceeded). Assume now that we have a reservoir
with capacity two that is full at the beginning. We
have three consuming activities A, B, and C such that
A<<B<<C, each activity consumes one item. There
is one more activity D that stores one item. Because
the reservoir is full at the beginning, we can deduce
that D cannot be processed first so A<<D (otherwise
the capacity is exceeded). Because the initial level of
the reservoir is two and A, B, and C require together
three items, there must some storing activity before
C, thus D<<C (Figure 5).

Fig. 5. Partial ordering of activities (arcs) can be

extended (dashed arcs) by using information
about resource capacity and consumed (-) and
produced (+) quantities. Resource capacity and
initial level is two here.

A (2) 4 16

7 15
C (5)

6 16
B (4)

4 7

7 15
C (5)

6 16
B (4)

A (2)

A
B

C

D

-1
-1

-1 +1

resource capacity

time

time

aggreg. demand

3.2 Search and scheduling strategies

When the scheduling problem is formulated as a
constraint satisfaction problem, we can use the
standard enumeration techniques. They are based on
trying a value for the variable, i.e., posting a
constraint in the form X=h. If the new problem has
no solution, this constraint is substituted by the
constraint X≠h and the enumeration continues. Such
technique is useful for resource allocation, i.e.,
assigning values to resource variables. Moreover
because the real meaning of the variable is known,
we can use some variable and value selection
heuristics derived from the original problem. For
example the activity with the minimal number of
alternative resources should be allocated first (the
first-fail principle) and it should be allocated to the
least used resource (succeed-first principle).

For resource scheduling, i.e., deciding the time of the
activity, it is more useful to use a different branching
scheme, namely X<h and X≥h. In particular, we can
decide about ordering of two non-yet ordered
activities. First, we can post the constraint A<<B,
i.e., end(A)≤start(B). If scheduling fails then we post
a negation of that constraint. It could be B<<A, if
both activities cannot run in parallel, or ¬ A<<B
otherwise. The question is what activities should be
ordered first. Again, we can use experience from
solving scheduling problems saying that the
bottleneck resources should be scheduled first. The
user can identify such resources or they can be
identified automatically. First let us define the slack
of the set of activities Ω using the following formula:

max(end(Ω)) - min(start(Ω)) - p(Ω).

Then, the resource with the minimal slack for any
subset of the activities processed by that resource is
scheduled first. We can use the same idea to select
the pair of activities to be ordered first. The slack for
the pair of activities A and B is:

max{ max(end(A)) - min(start(B)),
max(end(B)) - min(start(A)) } - p({A,B}).

Now, the pair of activities with the minimal slack is
selected for ordering. Notice that the slack for two
non-yet ordered activities consists of slacks for both
orderings B<<A and A<<B. The ordering leading to
a bigger slack is tried first.

In the above paragraphs we presented some heuristics
that guide scheduling. These heuristics are part of a
general search framework that could be a simple
depth-first search with backtracking. Nevertheless,
there exist more advanced search frameworks like
Limited Discrepancy Search (Harvey and Ginsberg,
1995) that proved to be very efficient especially in
scheduling problems. Limited Discrepancy Search
(LDS) attempts to solve heuristic violations. The

basic idea of LDS follows two observations. First,
the heuristic is less reliable in the earlier part of the
search tree and as search proceeds, more information
for a better heuristic decision is available. Second,
the number of heuristic violations is usually small
(good heuristics are reliable in most cases). LDS
changes the search strategy in such a way that
allowed heuristic violations – discrepancies – are
increasing as search progresses. During the first run,
LDS follows the heuristic. In case of failure, LDS
explores the branches with at most one heuristic
violation starting with the branches where the
heuristic is violated in the earlier part of the search
tree. In case of failure, the number of allowed
discrepancies is increased again and so on (Figure 6).
By changing the ordering of search branches, LDS
increases chances to find a solution.

Fig. 6. LDS explores the branches with minimal
discrepancies first. It also prefers the branch where
the discrepancy is located in an earlier part. In the
figure, the heuristic proposes to go left.

A short survey on applying constraints to scheduling
can be found in (Wallace, 1994). The books (Baptiste
et al., 2001; Dorndorf, 2002) cover the most widely
used constraint-based scheduling techniques.

4. CONCLUSIONS

Constraint-based scheduling is a glass-box
framework for solving scheduling problems. It has
two major advantages over the existing scheduling
approaches: clarity (thus glass-box) and generality of
the models. Moreover, it provides generic solution
techniques of constraint satisfaction that can be
further tuned for scheduling problems by using
special filtering algorithms and scheduling strategies.
Despite its “young age”, constraint-based scheduling
proved itself to be an efficient tool for solving real-
life scheduling problems. In fact, one of the leading
companies in the optimisation industry, ILOG, is
using constraint satisfaction as a core technology in
their products.

ACKNOWLEDGEMENTS

The author is supported by the Grant Agency of the
Czech Republic under the contract 201/01/0942.

REFERENCES

Baptiste, P. and Le Pape, C. (1996). Edge-finding

constraint propagation algorithms for
disjunctive and cumulative scheduling. In
Proceedings of the Fifteenth Workshop of the
U.K. Planning Special Interest Group.

Baptiste, P., Le Pape, C., Nuijten, W. (2001).
Constraint-based Scheduling: Applying
Constraints to Scheduling Problems. Kluwer
Academic Publishers, Dordrecht.

Barták, R. (1998). On-line Guide to Constraint
Programming, Prague,
http://kti.mff.cuni.cz/~bartak/constraints/

Barták, R. (2001). Filtering Algorithms for Tabular
Constraints, in Proceedings of CP2001
Workshop CICLOPS, 168-182. Paphos, Cyprus.

Barták, R. (2002). Visopt ShopFloor: On the Edge of
Planning and Scheduling. In Proceedings of
CP2002, 587-602. LNCS 2470, Springer
Verlag, Ithaca.

Brucker P. (2001). Scheduling Algorithms. Springer
Verlag.

Dorndorf U. (2002). Project Scheduling with Time
Windows: From Theory to Applications.
Physica Verlag, Heidelberg

Harvey W.D. and Ginsberg, M.L. (1995). Limited
Discrepancy Search. In Proceedings of
International Joint Conference on Artificial
Intelligence, 607-613.

Kumar, V. (1992). Algorithms for Constraint
Satisfaction Problems: A Survey, AI Magazine
13(1): 32-44.

Laborie P. (2001). Algorithms for Propagating
Resource Constraints in AI Planning and
Scheduling: Existing Approaches and New
Results. In Proceedings of 6th European
Conference on Planning, 205-216. Toledo,
Spain.

Régin J.-Ch. (1994). A filtering algorithm for
constraints of difference in CSPs. In
Proceedings of 12th National Conference on
Artificial Intelligence.

Tsang, E. (1995). Foundations of Constraint
Satisfaction. Academic Press, London.

Vilím P. and Barták, R. (2002). Filtering Algorithms
for Batch Processing with Sequence Dependent
Setup Times. In Proceedings of The Sixth
International Conference on Artificial
Intelligence Planning and Scheduling, 312-320.
AAAI Press, Toulouse, France.

Wallace, M. (1994). Applying Constraints for
Scheduling. In Constraint Programming,
Mayoh B. and Penjaak J. (eds.), NATO ASI
Series, Springer Verlag.

