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Abstract: Constraint programming provides a declarative approach to problem solving. 
The users just state the combinatorial (optimization) problems as constraint satisfaction 
problems and the underlying solver finds a solution for them. However, in practice, the 
situation is more complicated as there usually exist various ways how to describe the 
problem using variables, domains, and constraints. Moreover, the different models may 
lead to significantly different running times of the solvers. In fact, even a small change in 
the model may change the efficiency dramatically. This paper describes some known 
approaches to efficient modelling with constraints in a tutorial-like form. 
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1 INTRODUCTION 

“Constraint programming represents one of the 
closest approaches computer science has yet made 
to the Holy Grail of programming: the user states 
the problem, the computer solves it.” [4] This nice 
quotation might convince users that designing a 
constraint model is an easy and straightforward task 
and that everything stated as a constraint 
satisfaction problem can be solved by the 
underlying constraint solver. This holds for simple 
or small problems but as soon as the problems are 
more complex, the role of constraint modelling is 
becoming more and more important. Basically, it 
means that various models of the same problem 
may lead to different solving times, quite often to 
significantly different times. Unfortunately, there 
does not exist (yet) any guide that can steer the user 
how to design a solvable model. This “feature” of 
constraint technology might be a bit depressing for 
novices. Nevertheless, there are many rules of 
thumb about designing models that would be 
probably good in the solving times. Moreover, we 
also believe that it is important to be aware of the 
insides of constraint satisfaction to understand 

better behaviour of the solvers and, as a 
consequence, to design models that exploits the 
power of the solvers. 

The goal of this paper is to provide an overview 
of modelling techniques used to state problems as 
constraint satisfaction problems. Respecting what 
has been said in the previous paragraph, we first 
survey the mainstream constraint satisfaction 
technology. Then we make a short view to insides 
of some interesting constraints to explain their 
behaviour. In the rest of the paper we demonstrate 
some modelling techniques using several funny 
(seesaw), real-life (assignment problem), and hard 
(Golomb ruler) problems. 

2 CONSTRAINT SATISFACTION AT 
GLANCE 

Constraint programming (CP) is a framework for 
solving combinatorial (optimization) problems. The 
basic idea is to model the problem as a set of 
variables with domains (the values for the 
variables) and a set of constraints restricting the 
possible combinations of the variables’ values 
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(Figure 1). Usually, the domains are finite and we 
are speaking about constraint satisfaction problems 
(CSP). The task is to find a valuation of the 
variables satisfying all the constraints, i.e., a 
feasible valuation. Sometimes, there is also an 
objective function defined over the problem 
variables. Then the task is to find a feasible 
valuation minimizing or maximizing the objective 
function. Such problems are called constraint 
satisfaction optimization problems (CSOP). 

Note that modelling problems using CS(O)P is 
natural because the constraints can capture arbitrary 
relations and various constraints can be easily 
combined within a single system. Opposite to 
frameworks like linear and integer programming, 
the constraints are not restricted to linear equalities 
and inequalities. The constraint can express 
arbitrary mathematical or logical formula, like 
(x2<y ∨ x=y). The constraint could even be an 
arbitrary relation that can be hardly expressed in an 
intentional form. Then, a table is used to describe 
the feasible tuples. Moreover the constraints can 
bind variables with different even non-numerical 
domains, e.g. to restrict the length of a string by a 
natural number. 
 
 
 
 
 
 
 

Fig. 1. CSP consists of variables (X,Y,Z), their domains 
[1,2,3,4,5], and constraints (X<Y, Y<X-2). It can be 
represented as a constraint (hyper) graph. 

Constraint satisfaction technology must take in 
account the above described generality of the 
problem specification. Usually, a combination of 
search (enumeration) with constraint propagation is 
used; some other techniques, e.g., local search, can 
also be applied to solve problems with constraints. 
Despite the fact that many researchers outside CP 
put equality between constraint satisfaction and 
simple enumeration, the reality is that the core 
technology of CP is hidden in constraint 
propagation combined with sophisticated search 
techniques. 

Constraint propagation is based on the idea of 
using constraints actively to prune the search space. 
Each constraint has assigned a filtering algorithm 
that can reduce domains of variables involved in 
the constraint by removing the values that cannot 
take part in any feasible solution. This algorithm is 
evoked every time a domain of some variable in the 
constraint is changed and this change is propagated 
to domains of the other variables and so on (Figure 
2). Hence the technique is called constraint 
propagation. 

 

 
 
 
 
 
 
 
 
 
 

Fig. 2. Constraint propagation does domain reduction by 
repeated evoking of the filtering algorithms until a fix-
point is reached. 

Notice that each constraint may have its own 
filtering algorithm so there is no difficulty to solve 
the problems with very different constraints. The 
generic constraint propagation algorithm known 
under the notion of arc consistency takes care about 
the correct combination of the local filtering 
algorithms. On the other hand, this local view of the 
problem has the disadvantage of incomplete 
domain reduction. It means that some infeasible 
values may still sit in the domains of the variables 
and thus search (with backtracking) is necessary to 
find a complete feasible valuation of the variables. 
To reduce the deficiency of local propagation, it is 
possible to group several constraints and to see this 
group as a special constraint called a global 
constraint. Instead of using local propagation over 
the set of constraints, it is possible to design a 
special filtering algorithm for the global constraint 
to achieve more efficient domain filtering (see next 
section). 

As we mentioned above, some search algorithm 
is usually necessary to find values of the variables. 
This stage is called labelling as the variables are 
being labelled there, i.e. the values from respective 
domains are assigned to variables. After each 
assignment, the value is propagated via constraints 
to other variables. If failure is detected then another 
value is tried. If no value remains in the domain 
then the algorithm backtracks to the last but one 
variable and so on. In general labelling adds new 
constraints to the system to resolve the remaining 
disjunctions (e.g. X=5 ∨ X≠5). 

The standard constraint satisfaction technique 
looking for feasible solutions can be extended to 
find out an optimal solution. Usually a technique of 
branch-and-bound is used there. First, some 
feasible solution is found and then, a next solution 
that is better than the previous solution is looked for 
etc. This could be done by posting a new constraint 
restricting the value of the objective function by the 
value of the objective function for the so-far best 
solution. 

A deep and general view of constraint 
programming can be found in [2,6,7,11]. 

X in [1,2,3,4,5] 
 

X<Y 

Y in [1,2,3,4,5] 
 

Z in [1,2,3,4,5] 
 

Z<X-2 

X
<Y

 

X in [1,2,3,4,5] 
Y in [1,2,3,4,5]  
Z in [1,2,3,4,5] 

X in [1,2,3,4] 
Y in [2,3,4,5]  
Z in [1,2,3,4,5] 

X in [4] 
Y in [2,3,4,5]  
Z in [1] 

X in [4] 
Y in [5]  
Z in [1] 

Z<X-2 

X
<Y
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3 INSIDE THE CONSTRAINTS 

As mentioned in the introduction, we believe that 
understanding insides of constraint satisfaction 
technology improves the modelling skills. In 
particular, knowledge about how constraint 
propagation works prevents some surprise effects 
and as a consequence it leads to better models. 

3.1 Disjunction 

Assume modelling a simple disjunction X<5 ∨ 
X>7. There are several ways how to describe such 
constraint in constraint logic programming 
languages. The standard method in Prolog is to use 
two clauses to describe disjunction, in particular1: 

a(X):-X#<5. 
a(X):-X#>7. 

However, this is not a good way of modelling in 
terms of constraint satisfaction because it leads to 
alternative constraint models. In particular, the first 
model contains the constraint X<5 and if we find 
later that this model has no solution, then the 
second model with X>7 is tried. The main difficulty 
of this approach is losing work done when solving 
the first model because the system must backtrack 
to introduce the alternative constraint X>7. 

An alternative approach is using a disjunctive 
constraint in the form: 

a(X):-X#<5 #\/ X#>7. 

Then the constraint model is deterministic and 
search is realised within the labelling procedure 
only. Still, constraint propagation is very week 
there – the constraint does nothing until all but one 
components of the disjunction are proved to fail 
and then the remaining component is activated. In 
particular, after posting the above disjunctive 
constraint, the domain of the variable X does not 
change - we call it a surprise effect because what 
we expect from the constraint is to change the 
domain to (inf..4) \/ (8..sup). As soon as the system 
finds out (for some reason) that X>4 then X<5 is 
proved to fail and the constraint X>7 is posted 
which leads to change of the domain for X. 

There exist constructive approaches to 
disjunction which propagate each component in the 
disjunction separately and then the resulting 
domain pruning is a union of the pruned domains in 
each component. We can model this approach using 
the following constraint instead of the disjunction: 

a(X):-X in (inf..4)\/(8..sup). 

Constructive disjunction is expensive in general but 
if we are aware about its principles, we can 
implement them within our constraint models. 

                                                           
1 We use the notation of clpfd library of SICStus 
Prolog to describe arithmetic constraints [3]. 

3.2 All-different 

Constraint propagation can remove many 
inconsistent values from variables’ domains. 
However, due to its local character it can hardly 
detect global inconsistencies. Assume the constraint 
satisfaction problem from Figure 3. Local 
propagation via arc consistency deduces not change 
of the domains because all pairs of values are 
locally consistent. However, a more global view 
can discover that values b and c cannot be assigned 
to X3 because they will be used both for X1 and X2. 
 
 
 
 
 
 

Fig. 3. Locally consistent constraint satisfaction problem 
that is not globally consistent (b and c can be removed 
from the domain of X3). 

Constraint programming provides a mechanism 
called global constraints to improve propagation in 
the group of constraints via encapsulating them into 
a single global constraint with some special 
filtering algorithm for it. Typically, the constraints 
in the group are in some sense homogeneous, e.g. it 
is a set of inequality constraints between every pair 
of variables. Règin proposed an efficient filtering 
algorithm for the global constraint called all-
different modelling the set of inequalities [8]. 

The basic idea of Règin’s filtering algorithm is 
to represent the constraint as a bipartite graph with 
variables on one side and values on the other side - 
so called value graph (Figure 4). The edges connect 
the variables with the values in their domains. 
 
 
 
 
 
 
 

Fig. 4. A value graph for the all-different constraint with 
three variables. 

The filtering algorithm for the all-different 
constraint is then realised via computing maximal 
matching in this graph. If an edge is not part of any 
maximal matching then this edge is removed from 
the graph.  This corresponds to removing the value 
from the variable’s domain. 

The advantage of Règin’s algorithm is 
maintaining global consistency over the set of 
variables while keeping the time efficiency close to 
local propagation. Therefore it is almost always 
better to use such global constraints instead of a set 
of constraints. The details on the Règin’s algorithm 
can be found in [8]. 
 

X1 

 

X2 

 
X3 
 

a 

 

b 

 
c 
 

X1 in [a,b] 

X1≠X2 

X2 in [a,b] 
X3 in [a,b,c] 

X1≠X3 

X2≠X3 
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3.3 Scheduling constraints 

While some global constraints are more or less 
generally applicable (like the all-different), many 
other global constraints were proposed for 
particular application areas.  For example, one of 
the most popular global constraints in scheduling is 
edge finding. We describe the version for unary 
resources but there exist variants for discrete 
resources as well [1]. As we show later, even if 
edge finding origins in the scheduling applications 
it can be applied to other non-scheduling areas. 

The scheduling task is to allocate know 
activities to limited resources. Typically, each 
activity is described using its start time S and its 
processing time P. If the resource can process only 
one activity per time (so called unary resource) then 
the activities cannot overlap. It means that either 
one activity precedes the other activity or vice 
versa. Such constraint can be described as a 
disjunction: 

S1+P1≤S2 ∨ S2+P2≤S1 

For the set of n activities allocated to a single 
resource we get n2 binary disjunctive constraints of 
the above type. We already know that propagating 
through a disjunctive constraint is rather weak and 
that a group of similar constraints could be 
encapsulated in a global constraint. Edge finding is 
one of the most widely used techniques behind such 
scheduling global constraint. 

The basic idea of edge finding is to identify an 
“edge” between the activity and the group of 
activities, in particular to find out if the activity 
must be processed before the set of activities (or 
after it). Assume that A is an activity and Ω is a set 
of activities that does not contain A. In a unary 
resource the processing time for the set of activities 
equals to the sum of processing times of these 
activities: 

∑
Ω∈

=Ω
X

Xpp )()(  

Assume that processing of the activities from 
Ω∪{A} does not start with A. Then processing must 
start with some activity from Ω so the minimal start 
time is: 

)}({min))(min( Xstartstart
X Ω∈

=Ω  

If we add the processing time of Ω∪{A} to the 
minimal start time of Ω and we get the time after 
the maximal end time of Ω∪{A} then we know that 
the activity A can be processed neither inside nor 
after Ω (Figure 5). Thus, the activity A must start 
before Ω.  
 
Formally: 

min(start(Ω)) + p(Ω) + p(A) > max(end(Ω ∪ {A})) 
⇒ A<<Ω. 

A<<Ω means that A must be processed before every 
activity from Ω so it must be processed before any 
Ω'⊆Ω. We can use this information to decrease the 
upper bound for the end time of the activity A using 
the formula: 

end(A) ≤ min{ max(end(Ω')) - p(Ω') |  Ω'⊆Ω}. 
 
A similar rule can be constructed to deduce that A 
must be processed after Ω: 
 
min(start(Ω ∪ {A})) + p(Ω) + p(A) > max(end(Ω)) 

⇒ Ω<<A. 
 
The above edge finding rules form the core of the 
filtering algorithm reducing the bounds of the time 
variables. It may seem that this algorithm must 
explore all subsets Ω of the set of activities 
allocated to a given resource. Fortunately we can 
explore only the sets defined by pairs of activities 
called tasks intervals [1] so the time complexity of 
the edge finding filtering algorithm is O(n3) where 
n is the number of activities allocated to the 
resource. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Edge finding can deduce that the activity A must 
be processed before the activities B and C (processing 
time is in parentheses). Notice that binary disjunctive 
constraints deduce nothing there. 

4 MODELLING WITH CONSTRAINTS 

In this section, we present several example 
problems and their constraint models. The main 
issue behind the presented models is efficiency. We 
present several techniques how to improve 
efficiency of the models by adding redundant 
constraints. To allow immediate testing of the 
presented ideas, the models are programmed using 
the clpfd library of SICStus Prolog [3,8]. 

A (2) 4 16 

7 15 
C (5) 

6 16 
B (4) 

4 7 

7 15 
C (5) 

6 16 
B (4) 

A (2) 
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4.1 Seesaw 

Let us start our journey with a simple combinatorial 
problem of placing children to a seesaw [7]. 
Assume that Adam, Boris, and Cecil want to sit in a 
seesaw in such a way that the seesaw balances. 
There are five seats placed uniformly on both arms 
of the seesaw and one seat is placed in the middle 
(see Figure 6). Moreover, the boys want to have 
some space around them. In particular, they require 
that they are at least three seats apart. The weights 
of Adam, Boris, and Cecil are respectively 36, 32, 
and 16 kg. To solve the problem, we need to assign 
seats to all children. Figure 6 shows one of the 
acceptable solutions to this problem. 

 
 
 

Fig. 6. A seesaw problem and one of its solutions 

To model the problem as a constraint satisfaction 
problem, one needs to decide about the variables, 
their domains, and the constraints. The natural 
model for the seesaw problem is using a variable 
for each boy describing his position on the seesaw, 
i.e., A for Adam, B for Boris, C for Cecil. If we 
choose carefully the domain for these variables, i.e. 
-5,-4,…,+4,+5, then the constraint that the seesaw 
balances is simply that the moments of inertia sums 
to 0: 

36*A + 32*B + 16*C = 0. 

To restrict the minimal distances between the boys 
we can use a standard formula for computing 
distances, i.e. an absolute value of the difference of 
the positions. Thus we get the constraints: 

|A-B| > 2, |A-C| > 2, |B-C| > 2. 

Note that |A-B| > 2 is a compact representation of 
the disjunctive constraint (A-B > 2 ∨  B-A > 2). 

The above constraints describe completely the 
seesaw problem. To get the solution we need to 
post all these constraints and to do labelling that is 
a procedure deciding about the variables’ values via 
a depth first search. Figure 7 shows a coding in 
SICStus Prolog. 
 

seesaw(Sol):- 
 Sol = [A,B,C], 
  
 domain([A,B,C],-5,5), 
 36*A+32*B+16*C #= 0, 
 abs(A-B) #> 2, 
 abs(A-C) #> 2, 
 abs(B-C) #> 2. 
  
 labeling([ff],Sol). 

Fig. 7. A constraint model for the seesaw problem 

Notice that the constraint model for the seesaw 
problem is fully declarative. So far, we said no 
single word about how to solve the problem. We 
merely concentrate on describing the problem in 
terms of variables, domains, and constraints. The 
underlying constraint solver that encodes constraint 
propagation as well as the labelling procedure does 
the rest of the job. 

If we now run the program from Figure 7 we get 
six different solutions (Figure 8). 
 

?- seesaw(X). 
 
X = [-4,2,5] ? ; 
X = [-4,4,1] ? ; 
X = [-4,5,-1] ? ; 
X = [4,-5,1] ? ; 
X = [4,-4,-1] ? ; 
X = [4,-2,-5] ? ; 
no 

Fig. 8. All solutions of the seesaw problem 

As the open-eyed reader might notice, only three of 
these solutions are really different. The remaining 
three solutions are merely the symmetrical copies 
of the first three solutions. Thus we can get these 
solutions easily without wasting time in the general 
solving mechanism. To remove the symmetrical 
solutions from the search space one can add so 
called symmetry breaking constraint. In case of the 
seesaw problem, it could be a constraint restricting 
Adam to sit on the seats with non-positive numbers: 

A≤0. 

It may seem that the goal of the symmetry breaking 
constraints is to remove the symmetrical solutions 
only. However, this is useless if we are looking just 
for one solution satisfying the constraints. In fact, 
the real role of the symmetry breaking constraints is 
somewhere else. They remove parts of the search 
space where no solution exists because the search 
procedure already explored the symmetrical part of 
the search space and it found no solution there. For 
example, if we find that Adam cannot sit on the seat 
number -5, then we know immediately that he 
cannot sit on the seat number 5 too. Therefore, the 
symmetry breaking constraints reduce the search 
space and thus they increase efficiency of the 
models (see Section 4.3 for more convincing 
example). There exist other techniques of symmetry 
breaking, for details see [10]. 

If we look at the constraint model for the 
seesaw problem (Figure 7), we can see there a set 
of quite similar constraints, namely the distance 
constraints. Recall, that domain filtering is done 
independently in these constraints and domain 
changes are propagated between the constraints 
using the standard arc consistency technique. As we 
showed in section 3.2 this may lead to weaker 
pruning in comparison with some global 
consistency technique.  Figure 9 shows the result of 
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the initial domain pruning before the start of 
labelling (the symmetry breaking constraint is 
included). 

 
A in -4..0 
B in -1..5 
C in -5..5  

Fig. 9. Initial domain pruning for the seesaw problem 
(including symmetry breaking) 

As showed in Section 3.2, encapsulating a set of 
constraints into a global constraint can improve 
domain pruning while keeping the reasonable 
efficiency. For some problem areas there are 
special global constraints designed but after some 
abstraction they can be used in other problems as 
well. For example, if we see the boy as a box of 
width three, then, if the boxes do not overlap, all 
boys are at least three seats apart (Figure 10). 
 
 
 
 

Fig. 10. Allocating boys to seats is similar to scheduling 
activities to a unary resource. 

Thus, we can see the seesaw problem via glasses of 
scheduling and we can use the edge-finding like 
technique to model the set of distance constraints. 
In particular, the following constraint may 
substitute the set of distance constraints: 

serialized([A,B,C],[3,3,3],[]). 

The first argument of the serialized constraint 
describes the start times of the “activities” while the 
second argument describes their duration (the last 
argument is used for options like precedences 
which are not applied there). The constraint ensures 
that the activities do not overlap. 

Figure 11 shows the initial domain pruning 
when the serialized constraint is used. We can see 
that more infeasible values are removed from the 
variables’ domains and thus the search space to be 
explored by labelling is smaller. 

 
A in -4..0 
B in -1..5 
C in (-5.. -3)\/(-1..5)  

Fig. 11. Initial domain pruning for the seesaw problem 
with the serialized constraint  

4.2 Assignment problems 

The second studied problem is more real-life 
oriented than the seesaw problem. It belongs to the 
category of assignment problem like allocating 
ships to berths, planes to stands, crew to planes etc. 
In particular, we will describe a problem of 
assigning workers to products. 

Consider the following simple assignment 
problem [7]. A factory has four workers W1,  W2, 
W3, and W4, and four products P1, P2, P3, and P4. 
The problem is to assign workers to products so 
that each worker is assigned to one product and 
each product is assigned to one worker (Figure 12). 

  

 
Fig. 12. A simple assignment problem. 

The profit made by worker Wi working on product 
Pj is given by the table in Figure 13. 

 
  P1 P2 P3 P4 

W1 7 1 3 4 

W2 8 2 5 1 

W3 4 3 7 2 

W4 3 1 6 3 
 

Fig. 13. Table describing profit made by workers on 
particular products 

The task is to find a solution to the above problem 
such that the total profit is at least 19. 

A straightforward constraint model can use a 
variable for each worker indicating the product on 
which the worker is working. The fact that each 
worker is working on a different product can be 
described via a set of binary inequalities or better 
using the all-different constraint. To describe the 
profit of the worker, we can use a tabular constraint 
element. Then the sum of the individual profits 
must be at least 19. Figure 14 shows the constraint 
model for the assignment problem. 

 
assignment(Sol):- 
 Sol = [W1,W2,W3,W4], 
  
 domain(Sol,1,4), 
 all_different(Sol), 
 element(W1,[7,1,3,4],EW1), 
 element(W2,[8,2,5,1],EW2), 
 element(W3,[4,3,7,2],EW3), 
 element(W4,[3,1,6,3],EW4), 
 EW1+EW2+EW3+EW4 #>= 19, 
 
 labeling([ff],Sol). 

Fig. 14. A constraint model for the assignment problem 

By running the above program we get four different 
assignments that satisfy the minimal profit 

A 

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 

B C 
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constraint (Figure 15). The first two assignments 
have profit 19, the third assignment has profit 21 
and the last assignment has profit 20. 
 

?- assignment(X). 
 
X = [1,2,3,4] ? ; 
X = [2,1,3,4] ? ; 
X = [4,1,2,3] ? ; 
X = [4,1,3,2] ? ; 
no 

Fig. 15. All solutions of the assignment problem 

Quite often the task is not to find a feasible solution 
but to find an optimal solution. Typically, the 
constraint solvers use branch and bound technique 
to find optimal solutions. The nice feature is that 
one does not need to change the constraint model to 
solve an optimisation problem. Only the standard 
labelling procedure is substituted by a procedure 
looking for optimal solutions. In practice, the value 
of the objective function is encoded into a variable 
and the system minimises or maximises the value 
of this variable. Figure 16 shows a change in the 
code necessary to solve the optimisation problem 
where the task is to find an assignment with 
maximal profit. 
 

… 
EW1+EW2+EW3+EW4 #= E, 

 
maximize(labeling([ff],Sol),E). 

Fig. 16. A change of the constraint model to solve the 
optimisation problem 

The branch and bound technique behind the 
maximize procedure will now find the optimal 
solution which is X=[4,1,2,3]. 

Let us now turn our attention back from 
optimisation to the original constraint model. We 
decided to use variables for workers and values for 
products. However, it is possible to swap the role of 
variables and values and to describe products by 
variables and workers assigned to the products as 
values for these variables. Figure 17 shows such a 
dual constraint model. 

 
assignment(Sol):- 
 Sol = [P1,P2,P3,P4], 
  
 domain(Sol,1,4), 
 all_different(Sol), 
 element(P1,[7,8,4,3],EP1), 
 element(P2,[1,2,3,1],EP2), 
 element(P3,[3,5,7,6],EP3), 
 element(P4,[4,1,2,3],EP4), 
 EP1+EP2+EP3+EP4 #>= 19, 
 
 labeling([ff],Sol). 

Fig. 17. A dual model for the assignment problem 

In many problems the role of variables and values 
can be swapped and it is the model designer who 
decides which model is more appropriate. In our 
assignment problem it may seem that both models 
are fully equivalent. However, somehow 
surprisingly the dual model requires a smaller 
number of choices to be explored to find all the 
solutions of the problem (11 vs. 15). The reason is 
that profit depends more on the product than on the 
worker. Thus, the profitability constraint propagates 
more for products than for workers. Figure 18 
compares the initial pruning before the start of 
labelling for both primal and dual models. 
 

W1 in 1..4 
W2 in 1..4 
W3 in 1..4 
W4 in 1..4 

P1 in 1..2 
P2 in 1..4 
P3 in 2..4 
P4 in 1..4 

Fig. 18. Initial domain pruning for the assignment 
problem (left-primal model, right-dual model). 

Determining the efficiency of different models is a 
difficult problem. Usually, the best model will be 
the one in which information is propagated first. To 
improve propagation, the primal and dual models 
can be combined into one model. In practice, it 
means that variables and constraints from both 
models are used together and special “channelling” 
constraints interconnect the models (SICStus 
Prolog provides the assignment constraint to 
interconnect the models). Figure 19 shows a 
constraint model where both primal and dual 
models are combined. Thanks to stronger domain 
pruning this model requires only 9 choices to be 
explored to find all the solutions of the problem 

 
assignment(Workers):- 

Workers= [W1,W2,W3,W4], 
  
domain(Workers,1,4), 
all_different(Workers), 
element(W1,[7,1,3,4],EW1), 
element(W2,[8,2,5,1],EW2), 
element(W3,[4,3,7,2],EW3), 
element(W4,[3,1,6,3],EW4), 
EW1+EW2+EW3+EW4 #>= 19, 
 
Products = [P1,P2,P3,P4], 
  
domain(Products,1,4), 
all_different(Products), 
element(P1,[7,8,4,3],EP1), 
element(P2,[1,2,3,1],EP2), 
element(P3,[3,5,7,6],EP3), 
element(P4,[4,1,2,3],EP4), 
EP1+EP2+EP3+EP4 #>= 19, 
 
assignment(Workers,Products), 
 
labeling([ff],Workers). 

Fig. 19. A combined model for the assignment problem 
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Combining primal and dual models is an easy way 
how to improve domain pruning. As Figure 20 
shows, this combination really helped to prune 
domains of the variables describing workers. 
 
W1 in (1..2)\/{4} 
W2 in 1..4 
W3 in 2..4 
W4 in 2..4 

P1 in 1..2 
P2 in 1..4 
P3 in 2..4 
P4 in 1..4 

Fig. 20. Initial domain pruning for the assignment 
problem with combined primal and dual models 

On the other hand, the combined model requires 
overhead to propagate more constraints so one must 
be very careful when combining models with many 
constraints. 

4.3 Golomb ruler 

Lessons learnt in the previous sections will now be 
applied to solving a really hard problem of finding 
an optimal Golomb ruler of given size. In 
particular, we will show how “small” changes in 
the constraint model may influence dramatically the 
efficiency of the solver. 

Golomb ruler of size M is a ruler with M marks 
placed in such a way that the distances between the 
marks are different. The shortest ruler is the optimal 
ruler. Figure 21 shows an optimal Golomb ruler of 
size 5. 

 

 
Fig. 21. An optimal Golomb ruler of size 5. 

Finding an optimal Golomb ruler is a hard problem. 
In fact, there is not known an exact algorithm to 
find an optimal ruler of size M ≥ 24 even if there 
exist some best so far rulers of size up to 150 [5]. 
Still, these results are not proved yet to be (or not to 
be) optimal. Golomb ruler is not only a hard 
theoretical problem but it also has a practical usage 
in radio-astronomy. Let us now design a constraint 
model to describe the problem of the Golomb ruler. 

A natural way how to model the problem is to 
describe a position of each mark using a variable. 
Thus for M marks we have M variables X1,…, XM. 
The first mark will be in the position 0 and the 
position of the remaining marks will be described 
by a positive integer. Moreover, to prevent 
exploring all permutations of the marks, we can sort 
the marks (and hence the variables) from left to 
right by using constraints in the form Xi<Xi+1. 
Finally, we need to describe the difference of 
distances between the marks. Thus for each pair of 
marks i and j (i<j) we introduce a new distance 
variable Di,j = Xj – Xi. The difference of distances is 
then described using the all-different constraint 
applied to all distance variables. Figure 22 shows 
the above basic constraint model. 

X1 = 0 
X1<X2<…<XM 
∀i<j Di,j = Xj – Xi 
all_different({D1,2,D1,3,…,DM,M-1}) 

Fig. 22. A basic constraint model for the Golomb ruler 

The basic constraint model already includes several 
features discussed above. In particular, we use a 
global constraint all-different instead of the set of 
binary inequalities. Surprisingly, this decreases 
slightly efficiency of solving (see Figure 24) 
probably because domain filtering in other 
constraints is so weak that the overhead of all-
different exceeds its pruning power. 

We already removed many symmetric solutions 
by using the ordering constraints (permutation can 
be seen as a special case of symmetry). There is no 
doubt about a positive effect of this feature. Still, 
there is one more symmetry to be removed and this 
is mirroring of the ruler. Assume the optimal ruler 
[0,1,4,9,11] then the ruler [0,2,7,10,11] is a mirror 
of this ruler so it can be removed from the solution 
set. To remove such symmetry we can use a 
constraint in the following form: 

D1,2<DM-1,M 

As we can see from the table in Figure 24, adding 
this single constraint decreases significantly the 
running time. In fact, solving is almost two times 
faster because the symmetric sub-trees are not 
explored during search. 

We can further improve efficiency of the model 
by adding some redundant constraints. For 
example, we can compute better bounds for the 
difference variables. Di,j is a distance between the 
marks i and j. Notice that this distance consists of 
the distances (i,i+1), (i+1,i+2) …( j-1,j). Formally, 

Di,j = Di,i+1 + Di+1,i+2 + … + Dj-1,j 

Because all distances must be different, we can 
estimate the minimal sum of distances (i,i+1), 
(i+1,i+2) …( j-1,j). In particular: 

Di,j ≥ Σj-i = (j-i)*(j-i+1)/2 

Let us now try to estimate the upper bound for Di,j: 

XM = XM – X1 = D1,M = 
= D1,2 + D2,3 + … Di-1,i + Di,j + Dj,j+1 + … + DM-1,M 

Di,j = XM – (D1,2 + … Di-1,i + Dj,j+1 + … + DM-1,M) 

Again, all distances must be different so we can 
estimate the minimal sum of distances (1,2),.., 
(i-1,i), (j,j+1), …, (M-1,M). There are (M-1-j+i) 
different numbers so: 

Di,j ≤ XM – (M-1-j+i)*(M-j+i)/2 

The above analysis of the problem deduced three 
additional constraints that can be added to the basic 
model to improve domain pruning. Figure 23 
surveys these additional constraints. 

 

0 1 4 9 11 
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D1,2 < DM-1,M 
∀i<j Di,j ≥ (j-i)*(j-i+1)/2 
∀i<j Di,j ≤ XM–(M-1-j+i)*(M-j+i)/2 

Fig. 23. An extension of the model for the Golomb ruler 

As we can see from the table in Figure 24, the 
improved model pays off and the running times are 
significantly smaller. We have also tried the models 
without the Règin‘s filtering algorithm for the all-
different constraint. In case of the base model, the 
running times are slightly better (for the reasons see 
above) but for the extended model, all-different 
contributes significantly to good efficiency. 

 
 Base 

model 
- all_diff 

Base 
model 

Base model 
+ symmetry 

Base model 
+ symmetry 
+ bounds 

Base model 
+ symmetry 
+ bounds 
- all_diff 

7 0 1 0 0 0 
8 2 2 1 0 1 
9 18 17 8 2 7 

10 159 149 76 15 61 
11 3327 3455 1811 772 1766 

Fig. 24. Running times (in seconds on Mobile Pentium 4-
M 1.70 GHz, 768 MB RAM) to find out optimal Golomb 
rulers using different constraint models. „–all_diff“ 
means simple propagation only (see Appendix). 

For comparison with other algorithms we include 
some optimal Golomb rulers (Figure 25). 

 
1 [0] 
2 [0,1] 
3 [0,1,3] 
4 [0,1,4,6] 
5 [0,1,4,9,11] 
6 [0,1,4,10,12,17] 
7 [0,1,4,10,18,23,25] 
8 [0,1,4,9,15,22,32,34] 
9 [0,1,5,12,25,27,35,41,44] 
10 [0,1,6,10,23,26,34,41,53,55] 
11 [0,1,4,13,28,33,47,54,64,70,72] 
12 [0,2,6,24,29,40,43,55,68,75,76,85] 

Fig. 25. Some optimal Golomb rulers 

5 CONCLUSIONS 

Determining the efficiency of different models is a 
difficult problem and one which relies upon an 
understanding of the underlying constraint solver. 
The best model will be the one in which 
information is propagated earliest [7]. In this paper, 
we explained insides of some constraints to 
understand better their behaviour. We have also 
presented several techniques that usually improve 
efficiency of the models by following the above 
rule on propagating earliest. 

Encapsulating a set of constraints into a global 
constraint is always the recommended way of 
modelling especially if the appropriate global 
constraints are implemented in the system. As we 
showed, sometimes a global constraint intended to 
a different application area can be applied to the 

problem so do not be restricted to the subset of the 
global constraints for your problem area only. 

We have also showed that some parts of the 
solution (search) space can be removed because the 
solutions from these parts can be easily 
reconstructed from other solutions. In particular, 
including so called symmetry breaking constraints 
always speeds up the solver because they prevent 
the solver to explore irrelevant (symmetrical) parts 
of the search space. 

Last but not least we presented the idea of 
redundant constraints. Redundancy means that 
these constraints are not necessary to define the 
solution but they can significantly speed up the 
solver by improving domain pruning (and thus 
restricting the search space). One example of 
adding redundancy to the model is combining the 
primal model with the dual model where the role of 
variables and values is swapped. However, 
redundant constraints add overhead necessary to 
propagate through them so the user must be careful 
about using them. Empirical evaluation of the 
models could be a good guide there. 

In the presented models, we use a standard 
labelling procedure based on the first-fail principle. 
Another way how to improve efficiency is defining 
dedicated search procedures but this is a different 
story. 
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Appendix 

The following code describes a complete constraint model to solve the Golomb ruler problem of any size M. 
More precisely, the largest problem that we have solved was of size 13 and it took a couple of days on 1.8 GHz 
Pentium 4; solving problems of larger size will definitely take much more time. The code was tested in SICStus 
Prolog 3.8.7 [9] so it follows the syntax of constraints and built-in predicates of SICStus Prolog. For example, 
SICStus Prolog uses all_distinct constraint that implements the Régin’s filtering algorithm while 
all_different constraint implements a simple propagation where the value is removed from domains after 
its assignment to some variable. The last comment is about the upper bound for the variables describing marks. 
As the built-in labelling procedure requires the domains of the labelled variables to be finite we decided to use 
M2 as the upper bound for these variables. 
 
 

:-use_module(library(clpfd)). 
:-use_module(library(lists)). 
 
golomb(M,Sol):- 
 Sol = [0|_], 
 UpperBound is M*M, 
 ruler(M,-1,UpperBound,Sol), 
 last(Sol,XM), 
 distances(Sol,1,M,XM,Dist), 
 all_distinct(Dist), 
 
 (Dist=[DF,_|_] -> 
     last(Dist,DL), DF#<DL 
 ; 
     true 
 ), 
 
 minimize(labeling([ff],Sol),XM). 
 
ruler(0,_,_,[]). 
ruler(K,PrevX,UpperBound,[X|Rest]):- 
 K>0, 
 PrevX#<X, X#=<UpperBound, 
 K1 is K-1,!, 
 ruler(K1,X,UpperBound,Rest). 
 
distances([],_,_,_,[]). 
distances([X|Rest],I,M,XM,Dist):- 
 J is I+1, 
 distances_from_x(Rest,X,I,J,M,XM,Dist,RestDist), 
 I1 is I+1,!, 
 distances(Rest,I1,M,XM,RestDist). 
 
distances_from_x([],_,_,_,_,_,RestDist,RestDist). 
distances_from_x([Y|Rest],X,I,J,M,XM,[DXY|Dist],RestDist):- 
 DXY #= Y-X, 
 LowerBound is integer(((J-I)*(J-I+1))/2), 
 LowerBound #=< DXY, 
 UpperBoundP is integer(((M-1-J+I)*(M-J+I))/2), 
 DXY #=< XM - UpperBoundP, 
 J1 is J+1,!, 
 distances_from_x(Rest,X,I,J1,M,XM,Dist,RestDist). 


