
Extendible Meta-Interpreters
Roman Barták & Petr ·tûpánek

Department of Theoretical Computer Science
Charles University

Malostranské námûstí 25

Praha 1, Czech Republic

e-mail: {bartak,stepanek}@ksi.ms.mff.cuni.cz

 phone: +420-2 2191 4242

 fax: +420-2 53 27 42

Abstract

Meta-programming is a well-known technique widely used in logic programming
and artificial intelligence. Meta-interpreters are powerful tools especially for writing
expert systems in general and for writing their inference machines in particular. While
the traditional approach to meta-interpretation is based on the syntactic definition of a
meta-interpreter, new approach presented in this paper corresponds more to the
meaning of the prefix meta.

We analyze the structure of expert systems (problem solvers) to specify a general
description of a meta-interpreter. On that basis, we define the concept of an extendible
meta-interpreter. The extendible meta-interpreter is divided into two parts – the kernel
and its extension. While the kernel codes the functions that are common to most
interpreters, the extension specifies the domain-specific functions of a particular
interpreter.

1. INTRODUCTION

Meta-interpretation is one of the widely used programming techniques for writing rule-
based expert systems. There are obvious reasons for extensive use of meta-interpreters: they are
simple to use and understand, and, at the same time, they are very powerful. Many meta-
interpreters have been written for special purposes ([16],[17],[19]). In this paper, we
concentrate on meta-interpreters motivated by the construction of expert systems. We try to find
a uniform paradigm for writing such a type of meta-interpreters which we call extendible meta-
interpreters.

1

The extendible meta-interpreter consists of two parts, the kernel and its extension. The
kernel gives a description of functions common to most meta-interpreters. Usually, it has an
imperative character. On the other hand, domain-specific functions of a particular interpreter are
encoded in the extension. The extension typically has a declarative character.

Hence, an extendible meta-interpreter is fully specified by the extension of its kernel. By
this way, the emphasis is put more on the declarative style of programming. On the other hand,
the hierarchical structure of the kernel helps in coding the imperative part of the meta-interpreter.
Some examples of the PROLOG source code for the kernels and their extensions are given.

PROLOG is one of the languages that are widely used for writing rule-based expert
systems and their inference machines. Thus in what follows, we use PROLOG to express our
ideas about meta-intepreters, but our concepts are not confined to the logic programming
paradigm.

The paper is organized as follows. In Section 2, the classical definition of a meta-
interpreter is recalled and a well-known example of so called vanilla meta-interpreter is given.
We use some other examples to motivate a different approach to meta-interpretation. This new
concept of a meta-interpreter, which we call an extendible meta-interpreter, is outlined in Section
3. We give an informal definition of the extendible meta-interpreter in Section 4 and we also
compare extendible meta-interpreters with classical meta-interpreters there. In Section 4.1, we
define the extendible meta-interpreter and we describe its structure. We also present a road map
to the structure of the extendible meta-interpeter there. We give some examples of extendible
meta-interpreters written in PROLOG in Sections 4.2 and 4.3. We conclude with an overview
of related and future research in Sections 5 and 6 respectively.

2. THE META-INTERPRETERS CLASSIC

Recall the classic definition of a meta-interpreter that is based on the following idea. Given
an interpreter I of a programming language L, there are at least two ways how to write another
interpreter I1 of the same language L.

First, we can write I1 as a completely new interpreter. This may be a complicated and a
time consuming process, in particular, if there is only a little difference between the interpreter I
and the interpreter I1. In most cases, the process of developing I1 is ineffective and the
experience in developing the original interpreter I is of little help.

A better solution to the problem consists in writing a program P in L that changes the
behaviour of the interpreter I to the behaviour of the interpreter I1. The program P is called a
meta-interpreter.

The above two ways to writing a new interpreter are shown on the Figure 2.1.

interpreter I

new interpreter I

interpreter I
interpreter Iprogram P }1 1

Figure 2.1 (two approaches to writing a new interpreter)

2

Hence, if we want to write another interpreter, we simply write a new program P. It is
easier than programming a new interpreter. Here is the definition of the meta-interpreter.

DEFINITION 1 [13]:
A meta-interpreter of a given programming language L (or of a subset of L) is an

interpreter of L (or of the subset of L) that is written in L.

As you can see, the above definition is very simple. In fact, it is the relation between the
language of the interpreter and the interpreted language what is essential for the definition of the
meta-interpreter. For this reason, we speak about the syntactical basis of this definition.
There is a philosophical problem related to the above definition: the definition which is rather
syntactical by its nature, does not state what is an interpreter. More precisely, it does not say
whether the interpreter is a program or a machine or both.

Comparing interpreters with meta-interpreters, we conclude that the interpreter is a
program. It follows from the fact that, meta-intepreters represent a particular case of interpreters
and according to the above definition, they are programs written in the interpreted language.
Hence interpreters are programs, too.

We may still ask, however, where the machine was lost? Each program is simply a text, a
code. It is like a word, and a word by itself cannot hurt, but saying a word can. To say a word
we need a person, to interpret a program we need a machine.

 When speaking about an interpreter, we assume that there is a machine that executes it. On
the other hand, when speaking about an meta-interpreter, we assume that there is a machine with
an appropriate interpreter that executes the program of the meta-interpreter (see the Figure 2.1).

Hence, there is a difference between the concepts of an interpreter and of an meta-
interpreter. The classical definition does not take this difference into account and considers meta-
interpreters and interpreters at the same level.

We recall two well-known examples of meta-interpreters now. They are written in
PROLOG. As we already noted, PROLOG is a language suitable for writing meta-interpreters,
and, more generally for writing meta-programs which are programs that use other programs as
data. A meta-interpreter is a special case of a meta-program.

In PROLOG, we have the same structure of the program and the operated data. This is an
obvious advantage for purposes of meta-programming. As the code of an 'object' program
represents the data for its interpreter, the above feature of the language makes the task of writing
a meta-interpreter easier.

However, this is not an exclusive property of PROLOG, it is well-known that LISP and
some other languages have similar features, too.

The first example (the Program 2.1) shows the simplest meta-interpreter for PROLOG
programs. It only calls a standard PROLOG interpreter.

solve(Goal):-call(Goal)

Program 2.1

Although Program 2.1 is a meta-interpreter according to the above definition, there is no
visible advantage of using it instead of the standard PROLOG interpreter.

3

 The following meta-interpreter is written on another level of abstraction which is usually
called the clause reduction level. Meta-interpreters on that level make explicit the choice of
clauses being used to reduce a goal, and the choice of a literal to generate the resolvent.
Unification and backtracking are still handled implicitly, by the standard interpreter of PROLOG
[16]. Most other meta-interpreters are derived by making extensions of this basic form. For this
reason, the “basic” meta-interpreter (see below) is usually called the vanilla meta-interpreter in
an obvious analogy with the ice cream flavors [12].

solve(true).

solve((A,B)):-

solve(A),

solve(B).

solve(Goal):-

clause(Goal,Body),

solve(Body).

Program 2.2 (the vanilla meta-interpreter)

The clause reduction level mentioned above represents only one of many possible levels of
abstraction on the computation of a meta-interpreter. When analysing the structure of meta-
interpreters, one can identify various levels of abstraction. In what follows, the notion of an
abstraction level will be very important and we shall give it a more precise description. For
practical reasons, we shall identify the abstraction levels with granularity.

DEFINITION 2 [13]:
The granularity of a meta-interpreter corresponds to the level of access to the computation

of the underlying interpreter. The higher the level of the access to the computation of the
underlying interpreter, the finer the granularity of the meta-interpreter.

According to the above definition, the most rough granularity is attributed to meta-
interpreters that use the computations of the underlying interpreter directly and with no visible
access to any of its internal functions (like Program 2.1). The meta-interpreters that make visible
the access to some of the functions of the underlying interpreter are of a finer granularity. Note
that the vanilla meta-interpreter from Program 2.2 has a finer granularity than the simple meta-
interpreter from the Program 2.1.

The concept of granularity is important for classifying meta-interpreters. The finer the
granularity of a meta-interpreter, the more it may be able to change the computation of the
underlying interpreter. In most cases, the fine granularity implies slower interpretation because
the meta-interpreter itself has to be interpreted by an interpreter which we call a core interpreter
of the programming language (see the Figure 2.1). Thus the key problem in choosing an
appropriate granularity consists in finding a suitable compromise between the granularity of the
meta-interpreter, that is implied by the requirements on changing the behaviour of the underlying
interpreter, and the speed of its computation (i.e. interpretation).

It should also be noted that the meta-interpreters are doubling the space. We have already
mentioned that a meta-interpreter is using two interpreters, a core interpreter of the language and
a meta-interpreter to simulate another interpreter by changing the behaviour of the core
interpreter. For this reason, many procedures may be doubled as they exist both in the core
interpreter and in the meta-interpreter. It is obvious that this may cause a slow down of the

4

computation. Although compilation usually solves problems of speed, note that the compiled
meta-interpreter is not a meta-interpreter according to the above definition.

3 . A NEW APPROACH TO META-INTERPRETATION

The following example (the Program 3.1) presents a program that simulates the
computations of a finite automaton. It motivates a different view on meta-interpretation.

We call this program an interpreter because it interprets some code, in particular, the
general description of an arbitrary finite automaton. It is not a meta-interpreter, according to the
above definition, however, since there is a difference between the interpreted language, i.e., the
description of the finite automaton, and the language of the interpreter.

solve(Q,[]):-

final_state(Q).

solve(Q,[H|T]):-

rule(Q,H,NewQ),

solve(NewQ,T).

Program 3.1 (the finite automaton simulator)

Note that the Program 3.1 has a similar structure as the vanilla meta-interpreter (Program
2.2). The possibility of making changes to the mechanism of the interpreter and making
derivative programs is also saved.

The above examples demonstrate the main advantage of meta-interpreters consisting in an
easy and simple access to the mechanism of the interpreter. One might be tempted to say that a
meta-interpreter is an interpreter that gives an easy access to its own mechanism. Obviously, this
is not a definition of a meta-interpreter since it does not say what means easy, but we think that
it describes the character of meta-interpreters or a feature that users like on them more
accurately. The core of that “definition” consists in the close relationship between the interpreter
and the mechanism of this interpreter.

Our description of the concept of the extendible meta-interpreter will be closely related to
the meaning of the prefix meta. This prefix is frequently used in constructions as a meta-
program, a meta-theory, a meta-variable and it means something over the object level [1]: a
meta-theory is a theory over another theory, a meta-variable is a variable that ranges over the
(object) variables and a meta-interpreter is an interpreter of another interpreter. More precisely,
the meta-interpreter is an interpreter that interprets a code, hence a description, of another
interpreter. We shall explain this in more detail in Section 4.1.

In the following section we shall combine ideas of the above two pseudo-definitions into a
compact definition of an extendible meta-interpreter.

4 . THE STRUCTURE OF THE EXTENDIBLE META-INTERPRETER

Let us compare our two pseudo-definitions.

A meta-interpreter is an interpreter which:

/a/ – enables an easy access to the mechanism of the interpreter,

/b/ – interprets a code (a description) of some interpreter.

5

The pseudo-definition /a/ is a consequence of the definition of the meta-interpreter. A meta-
interpreter written in the interpreted language enables in many cases an easy access to the
mechanism of the interpreter. The definition /a/ is user-oriented, for users like everything what
is easy. But we know that the meaning of the word easy was not explained in /a/, however.

The pseudo-definition /b/ is based on the meaning of the prefix meta. It could be a
definition not only a pseudo-definition, if we defined what it is an interpreter and what is a
description of an interpreter. However, there is still another problem with the pseudo-definition
/b/: it depends on the interpreted program only, not on the interpreter itself.

It turns out that the role of an arbitrary interpreter is twofold:

• it is a meta-interpreter when it interprets some description of another interpreter and,

• it is only an interpreter if it interprets a program in the language which is not a
description of an interpreter.

We shall show that there is a big gap between the pseudo-definition /b/ and the classical
definition of the meta-interpreter (Definition 1).

 Let us have any interpreter I of a given programming language L. A meta-interpreter of the
same programming language L is a program P written in L which interprets the same codes
(programs) as the interpreter I, hence programs written in L. If we want to modify the
mechanism of the meta-interpreter P, we must change the whole meta-interpreter (compare the
Programs 2.1 and 2.2, describing the simplest meta-interpreter and the vanilla meta-interpreter).

Moreover, the above interpreter I is a meta-interpreter, too. It follows from the pseudo-
definition /b/, hence we shall call it a b-meta-interpreter if it interprets the above program P
which gives a description of the interpreter.

Note that if we want to modify the mechanism of the b-meta-interpreter, we need not
change the b-meta-interpreter I, but only the data, the code (i.e., the description) of the
interpreter P. However, this is not a typical example of using the pseudo-definition /b/. It only
shows that the pseudo-definition /b/ includes the classical approach, as well. It is well-known
that changing data is easier than changing a program. Therefore, transforming the mechanism of
the b-meta-interpreter should be easier.

The following table compares the concepts from the pseudo-definition /b/ with the classical
approach.

classical approach pseudo-definition /b/

program P meta-interpreter description of interpreter

interpreter I interpreter meta-interpreter

We explain the approach, based on the pseudo-definition /b/, in more detail in the
following section where we try to bridge the gap by introducing a new concept of an extendible
meta-interpreter.

4.1 PROBLEM SOLVING AND META-INTERPRETERS

We shall show that similar result as above can be obtained by a different method. Namely,
we shall reconsider the concept of a meta-interpreter and we shall use it as a program that

6

interprets a code of an interpreter. We will call the resulting meta-interpreter an extendible meta-
interpreter. The following sequence of Figures describes a top-down construction of (the
structure of) an extendible meta-interpreter.

Program
(Problem Solver)
(Expert System)Input

(Task)
(Question)

Output
(Result)
(Answer)

Figure 4.1 (program)

The Figure 4.1 shows the structure of an arbitrary program, or a problem solver or an
expert system as a black box.

Interpreter
(General Problem Solver)

(Inference Machine)

Program
(Specific Problem Description)

(Knowledge Base)

Input
(Task)

(Question)

Output
(Result)
(Answer)

Figure 4.2 (the structure of the program)

The Figure 4.2 also shows the structure of an arbitrary program (a problem solver, an
expert system) but in more detail. The program has two parts: an interpreter and a program
description. Let us call the step from the description on the Figure 4.1 to the Figure 4.2 the
specification step applied to a given program. The specification step describes more formally our
previous discussion of using the prefix meta.

The Figure 4.2 corresponds to the current state in expert systems research. An empty
expert system contains an inference machine and a knowledge base. A particular expert system
can be defined by specifying a particular knowledge base. One does not change the inference
machine but it is possible to specify the knowledge base.

However, sometimes we need to change the inference mechanism of the expert system.
This can be obtained by performing the specification step to the interpreter.

Meta-Interpreter

Program

Interpreter DescriptionInput Output

Figure 4.3 (new approach to meta-interpreters)

The Figure 4.3 shows the result. An interpreter is divided into two parts: a meta-interpreter
and a description of the interpreter. In terminology of expert systems, we can speak about a

7

general inference machine (a meta-inference machine) and about a description of a particular
inference machine. We need easy and user friendly descriptions of the interpreter and of the
inference machine respectively. It would be reasonable if both the program and the knowledge
base could have an access to the mechanisms of the interpreter and of the inference machine
through their descriptions.

The Figure 4.3 corresponds to the pseudo-definition /b/. Of course, we could now
continue in performing further specification steps which would result in a meta-meta-interpreter
with the description of the meta-interpreter, etc. There is no visible gain of doing it, however.

Now, we shall discuss some problems concerning terminology. We are trying to follow
two goals: we would like to have a terminology consistent with the classical approach to meta-
interpretation and, at the same time, we would like to generalize the concept of the meta-
interpreter. We should note a difference between the classical approach and that one adopted
here. The classical approach is based on specialization while the approach adopted here uses
generalization. The difference between the concepts of these two approaches is shown on the
Figure 4.4. We think that the latter approach is more general, because generalization includes
specification, as shown in the discussion at the beginning of the Section 4.

Meta-Interpreter

Program

Meta-Interpreter

Program

Interpreter Description

A) classical approach B) new approach

Interpreter

Figure 4.4 (comparison of the approaches to meta-interpretation)

There is a simple solution to the above terminology problem which is based on renaming
the concepts of the new approach:

the meta-interpreter → the kernel of the extendible meta-interpreter

the description of the interpreter → the extension of the kernel.

We can now describe an extendible meta-interpreter by simple equation:

extendible meta-interpreter = kernel + extension.

Kernel

Extension

Program

Input Output

Figure 4.5 (the structure of an extendible meta-interpreter)

The Figure 4.5 displays the structure of an extendible meta-interpreter. We may ask
whether it is possible to write a fixed kernel and complete it by various extensions to various
interpreters. We shall explain roles of all parts shown in the Figure 4.5. There is a program
describing an algorithm to solve a particular problem. It is written in a programming language L.
The extension of the kernel represents a description of a particular interpreter, e.g., in PROLOG
or LISP of the given programming language L. The kernel is a general machine (program) for

8

interpreting programs and the kernel and its extension put together a particular interpreter of the
programming language in question.

Now, we shall compare extendible meta-interpreters to classical meta-interpreters. First,
the structure of the extendible meta-interpreter is scalable. The Figure 4.6 explains what does it
mean.

extension

interpreter

meta-interpreter

a) classical interpreter

b) classical meta-interpreter

d) classical extendible
 meta-interpreter

c) generalized meta-interpreter

kernel

hardware (machine)

meta-kernel

object-kernel

extension

HW interpreter

HW interpreter

HW extension

meta-interpreter

Figure 4.6 (scalable structure of the extendible meta-interpreter)

Note that the parts a) and b) represent current approach to interpretation. We discussed
above some problems of classical meta-interpreters, in particular we noted that it is difficult to
change their behaviour (part a) and that they are less efficient and are doubling the space (part
b). Extendible meta-interpreters from the parts a) and b) and meta-interpreters have one feature
in common: the extension has an imperative character and therefore it is difficult to change the
extendible meta-interpreter. The part b) also shows that the classical approach to meta-
interpretation can be expressed in terms of the extendible meta-interpreter.

The parts c) and d) are more interesting. We shall discuss the part c) later in this paper
(Section 4.2), as it is similar to a classical meta-interpreter. Therefore it inherits some less
favourable features of meta-interpreters, in particular inefficiency and doubling memory space.

 The part d) represents the structure of extendible meta-interpreters with the kernel written
in the object (machine-oriented) language and the extension written in any high-level language.
We will prefer to write the extension in the interpreted language because then it will be easy to
change the interpreter's mechanism and the interpreted program can influence the interpreter's
mechanism through the extension. The classical extendible meta-interpreter (the part d) of the
Figure 4.6) removes the problems with inefficiency and doubling, because there is only one
interpreter, hidden in the object kernel, that can be influenced through the extension.

We shall give examples of extendible meta-interpreters with the structure similar to the part
c) of the Figure 4.6 which show that it is easy to write the meta-kernel and the extension in a
high-level language. By compiling the meta-kernel and linking with an interpreter we can simple
get an object-kernel and so remove the inefficiency and doubling. We speak about the object-
kernel and the meta-kernel because they are only parts of the kernel. The object-kernel is written
in an object language while the meta-kernel is written in the interpreted language.

Now we can give a general definition of an extendible meta-interpreter.

9

DEFINITION 3:
An extendible meta-interpreter of a given programming language is an interpreter of that

language which is set up of two parts: the kernel and the extension. The extension is written in a
superset of the interpreted language.

The power of an extendible meta-interpreter is obtained by the separation of the kernel and
its extension. Features which are common to various interpreters can be hidden in the kernel,
while the extension contains domain-specific information for a particular interpreter, the
extension being encoded either in the interpreted language or in its superset. Such an
organization of the extendible meta-interpreter gives an easy access to the mechanism of the
interpreter.

The definition of an extendible meta-interpreter covers all parts of the Figure 4.6. For
example, a LISP machine (the kernel) and a LISP interpreter (the extension) written in LISP
make an extendible meta-interpreter. Its structure corresponds to the part a) of the Figure 4.6.
All PROLOG meta-interpreters make the extensions of extendible PROLOG meta-interpreters.
Nevertheless, these two examples are not typical for extendible meta-interpreters because of the
imperative character of the extension.

We prefer the declarative style of programming of the extension because it is easier to write
a declarative description of the interpreter than an imperative one. For the same reason, we also
prefer meta-interpreters consisting of the meta-kernel in an imperative style and the extension in
a declarative style (see the part c) of the Figure 4.6). We call an extendible meta-interpreter an
easily extendible meta-interpreter if it has a declarative extension.

In what follows, we shall discuss only easily extendible meta-interpreters. They have the
structure shown in the part c) of the Figure 4.6, where the kernel consists of a machine, an
interpreter and a meta-kernel. In this case, we shall call the meta-kernel simply the kernel.

In the following section, we try to find the PROLOG code of the meta-kernel and of the
interface to the extension respectively. We will concentrate on the hierarchical structure of the
program, as well.

4.2 EXTENDIBLE META-INTERPRETERS IN PROLOG

In this section we shall present some examples of easily extendible meta-interpreters in
PROLOG. We shall show some PROLOG kernels (meta-kernels) and their extensions. So far,
we have used examples of meta-interpreters, that were mostly derivatives of the vanilla meta-
interpreter. We did so to find out what these meta-interpreters have in common, to grasp these
common features and encode them in the kernel.

The simplest feature that can be identified in many meta-intepreters consists in using the
predicate solve in programming meta-interpreters or interpreters. We shall call this feature a
Zero Level Kernel, since it implies an empty meta-kernel and it corresponds to the case b) from
the Figure 4.6. The Zero Level Kernel is specified by the following predicate:

solve(Goal)

or more generally by the binary predicate

solve(Goal,Result).

The arguments of the predicate solve of the meta-interpreters can be divided into two
groups: input (goal) and output (result) arguments. It follows that, almost every current meta-

10

interpreter is an extension of the Zero Level Kernel and we can say that the Zero Level Kernel
corresponds to current state of art in programming meta-interpreters.

Obviously, the Zero Level Kernel is not very interesting from the point of view of
extendible meta-interpreters. We shall discuss now a more powerful kernel which we call the
Half Level Kernel. It is non-empty and reflects the fact that every goal can be solved in three
possible ways. First, primitive (empty) goals are solved in one step (for example true in
PROLOG). Second, more complex goals are transformed to other (preferably simpler) goals.
Third, some goals have no solutions. The Half Level Kernel consists of a (PROLOG) program
that implements these three ways.

solve(Task,Result):-

empty_goal(Task,Result).

solve(Task,Result):-

transform_task(Task,NewTask,Frontier),

solve(NewTask,SubResult),

customize_solution(Frontier,SubResult,Result).

solve(Task,Result):-

rest_solution(Task,Result).

Program 4.1 (the Half Level Kernel)

The Half Level Kernel is appropriate for implementing some simple search algorithms. We
shall show the extension of the Half Level Kernel which describes the depth-first search. The
resulting program (the Program 4.1 and the Program 4.2) can be seen as an extendible meta-
interpreter that interprets a program consisting of the description of a particular graph (the edges)
and a set of final nodes.

empty_goal(Node,yes):-

final_node(Node).

transform_task(Node,NewNode,not_used):-

not final_node(Node),

edge(Node,NewNode).

customize_solution(not_used,yes,yes).

rest_solution(_,no).

Program 4.2 (the extension for search)

We can also write an extension of the Half Level Kernel implementing a simple PROLOG
interpreter corresponding to the vanilla meta-interpreter1.

1goals in forms like (true,(true,true)) are not processed by this extension

11

empty_goal(true,yes).

transform_task((A,B),NewGoal,not_used):-

transform_task(A,NewA,_),

and(NewA,B,NewGoal).

transform_task(A,B,not_used):-

A\=true,A\=(_,_),

clause(A,B).

customize_solution(not_used,yes,yes).

rest_solution(_,no).

Program 4.3 (the extension for the interpreter of PROLOG)

In the above extension as well as in many other meta-interpreters, the process of
transforming the goal consists of three steps: selection of a subgoal, expansion or reduction of
this subgoal, and, finally, making a new goal. This simple idea is reflected in the First Level
Kernel.

solve(Task,Result):-

empty_goal(Task,Result).

solve(Task,Result):-

select_subgoal(Task,Goal,Frontier),

expand_goal(Goal,ExpandedGoal,Rule),

make_task(Frontier,ExpandedGoal,NewTask),

solve(NewTask,SubResult),

customize_solution(Frontier,Rule,SubResult,Result).

solve(Task,Result):-

rest_solution(Task,Result).

Program 4.4 (the First Level Kernel)

Some new notions appear in the Program 4.4, namely the Frontier (also used in the Half
Level Kernel) and the Rule. The variable Frontier contains information about the choice of the
selected atom from the goal, which is used in the process of constructing a new goal.
Sometimes, we need to add some additional information to the Frontier in the process of
constructing a new goal. This information is used later when customizing the solution.

The variable Rule contains information about the transformed goal, for example the
description of the rule (the clause) used in the transformation. This information is used when
customizing the solution, too.

Now, it is not difficult to write an extension of the First Level Kernel by implementing a
simple PROLOG interpreter. In fact, it will have the same power as the extension of the Half
Level Kernel described by the Program 4.3.

12

empty_goal(true,yes).

select_subgoal((A,B),Goal,[B|Rest]):-

select_subgoal(A,Goal,Rest).

select_subgoal(Goal,Goal,[]):-

Goal\=true,Goal\=(_,_).

expand_goal(Goal,ExpandedGoal,not_used):-

clause(Goal,ExpandedGoal).

make_task([B|Rest],ExpandedGoal,NewTask):-

make_task(Rest,ExpandedGoal,A),

and(A,B,NewTask).

make_task([],Goal,Goal).

customize_solution(_,_,yes,yes).

rest_solution(Task,no).

Program 4.5 (the extension for the interpreter of PROLOG)

Note that the higher is the level of the kernel, the more complex structure has its extension.
This is an obvious consequence of the increasing power of higher level kernels and of their finer
granularity. The hierarchy of kernels is partially based on their history: we started with the Zero
and the First Level Kernels, because we mostly worked with meta-interpreters of PROLOG.
Then we added the simplified version of the First Level Kernel which we called the Half Level
Kernel. We did it for the sake of implementing search. We have used the term Half Level,
because we wanted to preserve the hierarchy of levels. We stopped at the Second Level Kernel.
Note that adding the higher level kernels is also possible. It should be said, however, that
kernels of levels higher than two become increasingly dependent on the interpreted language.

Now, we shall say a word about the interface between the kernel and its extension. In the
above examples, the interface consists of the list of predicates. It is due to our choice of
PROLOG as the language for writing extensions. The user defined predicates make hooks in the
kernel where the user can hang the procedures that modify the behaviour of the kernel. Then the
corresponding extension consists of definitions of (the programs for) these predicates.

We shall consider the interfaces to the above mentioned kernels. Obviously, the interface to
the Zero Level Kernel is the simplest. It consists of the only predicate

solve.

We have already noted that for this reason, almost every PROLOG meta-interpreter is an
extension of the Zero Level Kernel. The interface to the Half Level Kernel is more complicated.
It consists of the predicates

empty_goal, transform_task, customize_solution and rest_solution.

The interface to the First Level Kernel is still more complicated. It consists of the following
predicates:

empty_goal, select_subgoal, expand_goal, make_task, customize_solution

and

rest_solution.

13

4.3 OTHER EXTENSIONS AND THE SECOND LEVEL KERNEL

We start this section with a more complicated example of extension of the First Level
Kernel. This extension (the Program 4.6) and the First Level Kernel (the Program 4.4) fully
describe an extendible PROLOG meta-interpreter that computes proofs2. We also use this
extension to present possible structure of the Frontier. This extension has the following
property: it requires some additional information when a new task is created and this information
is used again later in the process of customizing solution. Note that the First Level Kernel (the
Program 4.4) and this extension (the Program 4.6) make the core of the above mentioned
Second Level Kernel.

empty_goal(true,fact).

select_subgoal((A,B),G,[(B,_)|T]):-

select_subgoal(A,G,T).

select_subgoal(G,G,[]):-

G\=(_,_),G\=true.

expand_goal(A,B,A-B):-

clause(A,B).

make_task([(B,Ch)|T],Goal,Task):-

make_task(T,Goal,A),

and(A,B,Task),

if_then_else(A=true,Ch=collapsed,Ch=not_collapsed).

make_task([],Goal,Goal).

customize_solution([(_,not_collapsed)|T],Rule,(SProofA,ProofB),

(ProofA,ProofB)):-

customize_solution(T,Rule,SProofA,ProofA).

customize_solution([(_,collapsed)|T],Rule,ProofB,(ProofA,ProofB)):-

ProofB\=failed,

customize_solution(T,Rule,fact,ProofA).

customize_solution([],A-B,ProofB,A-ProofB):-

ProofB\=failed.

rest_solution(_,failed).

Program 4.6 (the extension for the interpreter of PROLOG with proofs)

We can also use the same kernel (the Program 4.4) for writing a completely different
extendible meta-interpreter. The only thing we have to do is to write a new extension. The
following program is an example of using the First Level Kernel for a quite different interpreter.
The program is similar to the Program 3.1: it simulates a finite automaton.

2goals in forms like (true,(true,true)) are not processed by this extension

14

empty_goal([]-Q,accept):-

final_state(Q).

select_subgoal([H|T]-Q,H-Q,T).

expand_goal(A-Q,NewQ,not_used):-

rule(Q,A,NewQ).

make_task(T,Q,T-Q).

customize_solution(_,_,accept,accept).

rest_solution(_,no).

Program 4.7 (the extension for the finite automaton with proofs)

If we do not include the predicates of the interface that are not used in the bodies of the
clauses the interpreted language consists of only two predicates, namely, final_state and
rule. This approach corresponds to the standard description of a finite automaton (the finite
automaton is fully described by the set of final states and the set of transformation rules).

However, there is a difference between the Programs 4.6 and 4.7, the later is rather
declarative while the former is imperative. Therefore the First Level Kernel is satisfactory for the
simulator of a finite automaton, but it is not suitable for the extendible PROLOG meta-interpreter
(the extension should have a declarative character). We introduce the Second Level Kernel to
save the declarative character of the extension.

Note that, there are three predicates of imperative character in the Program 4.6, namely,

select_subgoal, make_task and customize_solution.

The structure of these predicates is determined by the structure of the Frontier and vice-
versa. We have chosen the structure of the Frontier as simple as possible, namely as a list of
pairs. This list (the Frontier) arose from a process of subgoal selection where the first
components of the pairs of the list were instantiated while the second components remainded
free (see the Programs 4.6 and 4.8). The second components of the pairs can be instantiated in
the process of making a new task where the first components are already used (see again the
Program 4.6). Finally, the Frontier can be used in customizing the solution (like in the Program
4.6). Note that, the length of the Frontier is determined by the “depth” of the task which is equal
to the number of steps which are used to find a subgoal of this task. By this way, the depth of
the task is determined by the structure of the task and by the strategy of subgoal selection.

We introduce here new concepts, namely, the meta task and the simple task. One can select
directly the subgoal from the simple task using the predicate custom_goal_selection.
Therefore, the structure of the simple task is invisible to the extension, i.e., to the meta-level,
and the depth of the simple task is equal to one. The opposite concept to simple task is the meta
task. The meta task can be decomposed into some “independent” subtasks using the predicate
goal_selection. By this way, the structure of the meta task remains visible to the extension,
i.e., to the meta-level, and the depth of the meta task is at least two. For example, the
conjunction of goals is a meta task while the primitive goal is a simple task in extendible
PROLOG meta-interpreter.

Now, we can write the PROLOG code of the Second Level Kernel.

15

select_goal(Task,Goal,[(S,_)|T]):-

meta_task(Task),

goal_selection(Task,SubTask,S),

select_goal(SubTask,Goal,T).

select_goal(Task,Goal,[(S,_)]):-

simple_task(Task), /* not meta_task(Task) */

custom_goal_selection(Task,Goal,S).

make_task([(S,Ch)|T],Goal,Task):-

make_task(T,Goal,SubTask),

combine_task(S,SubTask,Task,Ch).

make_task([],Goal,Goal).

customize_solution([F|T],Rule,SubSol,Sol):-

decombine_solution(F,SubSol,Sol1,Sol2),

customize_solution(T,Rule,Sol1,SSol1),

combine_solution(F,SSol1,Sol2,Sol).

customize_solution([],Rule,SubSol,Sol):-

combine_rule_solution(Rule,SubSol,Sol).

Program 4.8 (part of the Second Level Kernel)

The Second Level Kernel consists of the First Level Kernel (the Program 4.4) and of the
Program 4.8. Because of the fixed structure of the Frontier, the Second Level Kernel is suitable
for interpreting languages that satisfy the following criterion:

“The process of subgoal selection fully determines the processes of making a new task and
customizing solution.”

PROLOG is an example of language that satisfies this criterion. In most cases, we do not
need customize the solution explicitly. However, the languages that do not satisfy the above
criterion can be interpreted by the Second Level Kernel as well, but they are not supported i.e.
the programmer has to code all the user defined predicates even if the extendible meta-interpreter
will not use them all.

The Second Level Kernel can be used for a wide range of extendible meta-interpreters. It is
easy to prove that every extendible meta-interpreter, that can be written with the use of the
Second Level Kernel, can also be written with the use of the First Level Kernel and vice-versa.
We also hope that the Second Level Kernel is suitable for writing the inference machines of the
rule-based expert systems. The Second Level Kernel would then represent a shell of the
inference machine.

5. RELATED RESEARCH

In this section, we shall compare the idea of extendible meta-interpreters with a similar
approach based on skeletons. The theory of skeletons is a significant part of a methodology for
systematically building complicated Prolog programs from standard components [15].

Skeletons are basic Prolog programs with a well-understood control flow. Applying a
technique, a standard Prolog programming practice, to a skeleton creates an extension of the
skeleton. It is possible to create different extensions of the same skeleton, each for a specific
feature of the desired program. Finally, separate extensions of the same skeleton can be

16

automatically or semi-automatically composed into a single program. An example of using
skeletons in development of a Prolog tracer can be found in [8].

At the beginning, we should note that skeletons are used for a slightly different purpose
than the extendible meta-intepreters are. While the skeletons are primary dedicated to simplifying
the process of complicated Prolog program development, extendible meta-interpreters are more
oriented to the area of meta-interpretation and interpretation in general. However, the idea of the
extendible meta-interpreter, hence of dividing the program into the kernel and its extension, can
be also used in the development and maintenance of complicated programs.

The following difference between the skeleton and the kernel is more serious. While the
skeleton is a program, a stand-alone application, and the extension of the skeleton is also a
stand-alone application, the kernel and its extension are just modules of an extendible meta-
interpreter. Therefore, to develop an extendible meta-interpreter one needs both the kernel and
the extension of the kernel. Finally, programming an extension of the skeleton includes
changing the skeleton, i.e., changing the existing code, while programming the extension of the
kernel is nothing else than adding a new code to the kernel. The only thing one has to follow is
the structure of the interface between the kernel and its extension. In our opinion, this difference
implies that the development of the extension of the skeleton is more complicated than the
development of the extension of the kernel.

Despite the above mentioned differences, skeletons and extendible meta-intepreters are
closely related to each other. Identifying an appropriate skeleton is similar to finding a kernel,
although programming the kernel could be a little bit complicated process because the
programmer has also to design an appropriate interface between the kernel and its extension. But
this effort is definitely paid off by easier development of future extensions of the kernel. Since
separate extensions of the same kernel are based on the same set of interface predicates, it is also
easier to compose them into a single extension which includes features of parent extensions.

6. FUTURE RESEARCH

As we sketched above, the idea of extendible meta-interpreters can be used in the
development and maintenance of complicated programs. However, contrary to the skeletons, the
methods for automatic or semi-automatic composition of various extensions have not been
drawn up yet for extendible meta-interpreters. So, it is the first open area of conceivable
research.

The second area of interest is using techniques of extendible meta-interpreters in the
construction of HCLP (Hierarchical Constraint Logic Programming) interpreters [18]. Inspired
by the meta-terms and attributed variables [9], we suggest to use extendible meta-interpreters in
a similar manner [5]. While the meta-terms generalize the process of unification and they are
suitable for implementing CLP interpreters therefore, extendible meta-interpreters generalize the
whole process of interpretation including unification. So, extendible meta-interpreters could
serve as a platform for implementing various HCLP interpreters with inter-hierarchy
comparison. This also fulfills our original goal of using extendible meta-interpreters for expert
systems construction because, in our opinion, HCLP with inter-hierarchy comparison is suitable
for expert systems shell composition [4].

7. CONCLUSIONS

In this paper, we have described a new approach to meta-interpretation, based on the
concept of an extendible meta-interpreter. The extendible meta-interpreter preserves the positive

17

features of meta-interpreters, namely, an easy access to the mechanism of the interpreter and, at
the same time, the possibility to suppress the slow down of the computation and doubling the
memory space.

The idea of an extendible meta-interpreter is based on the separation of the general part of
an interpreter from the domain-specific one. The extendible meta-interpreter consists of two
parts: the kernel and its extension. The hierarchical structure of the kernel, makes it possible for
the user to select the level (granularity) that best suits his or her needs without loss of speed
typical for meta-interpretation. The hierarchical structure of the kernel can be also used for the
classification of (meta)interpreters.

A uniform frame for writing (meta-)interpreters helps the programmer to concentrate on
features of a particular (meta-)interpreter without troubles with general principles of
interpretation. The idea of the extendible meta-interpreter can also help as a consolidating
element in the reflective programming. Our approach can help in composing interpreters or
developing program modulants, enhancements and mutants [16], too.

We have concentrated mostly on using extendible meta-interpreters as a tool for the
construction of inference machines of expert systems and problem solvers. An example of the
extendible meta-interpreter for search, a classical technique used for construction of expert
systems, has been given. The concept of an extendible meta-interpreter was originally motivated
by the research into meta-interpreters for building expert systems. Using an extendible meta-
interpreter simplifies and speeds up the construction both of a particular inference machine and
of a particular expert system.

Throughout the paper, we used PROLOG to demonstrate some examples of meta-
programs. This does not imply that the results of the paper are confined to the logic
programming paradigm. The above results can be applied to other programming environments,
too. We have also presented some example programs to show that idea of extendible meta-
interpreters is practical and useful.

REFERENCES

[1] Abramson, H. and Rogers, M.H. (eds.), Meta-Programming in Logic Programming, The
MIT Press, Cambridge, Massachusetts, 1989

[2] Barták, R., Meta-interpretation of Logic Programs (in Czech), Diploma Thesis, Charles
University, Prague, 1993

[3] Barták, R. and ·tûpánek, P., Meta-Interpreters and Expert Systems, Tech. Report No
115, Department of Computer Science, Charles University, October 1995

[4] Barták, R., Expert Systems Based on Constraints (in Czech), Doctoral Dissertation,
Charles University, Prague, 1997

[5] Barták, R., A Plug-In Architecture of Constraint Hierarchy Solvers, to appear in
Proceedings of PACT'97, London, April 1997

[6] Clocksin, W.F. and Mellish, C.S., Programming in Prolog, Springer-Verlag, Berlin,
1981

[7] Jain, A., Sterling, L. and Kirschenbaum, M., Towards Reusability Based Upon Similar
Computational Behaviour, in: Proceedings of the 7th International Conference on Software
Engineering and Knowledge Engineering, Rockville, Maryland, USA, June 1995

18

[8] Lakhotia, A., Sterling, L. and Bojantchev, D., Development of a Prolog Tracer by
Stepwise Enhancement, in: Proceedings of the Third International Conference on Practical
Applications of Prolog, Paris, April 1995

[9] Meier, M., Brisset, P., Open Architecture for CLP, TR ECRC-95-10, ECRC, 1995

[10] Nilsson, N.J., Problem-Solving Methods in Artificial Intelligence, McGraw-Hill, New
York, 1971

[11] Parsaye, K. and Chignell, M., Expert Systems for Experts, John Wiley & Sons, New
York, 1988

[12] Sterling, L., Meta-Interpreters: The Flavors of Logic Programming?, in: Proceedings of
Workshop on foundation of Logic Programming and Deductive Databases, Washington,
1986

[13] Sterling, L., Constructing Meta-Interpreters for Logic Programs, in: Advanced School on
Foundations of Logic Programming, Alghero, Sardinia, Italy, September 1988

[14] Sterling, L., Jain, A. and Kirschenbaum, M., Composition Based on Skeletons and
Techniques, Work presented at ILPS `93 Post Conference Workshop on Methodologies
for Composing Logic Programs

[15] Sterling, L. and Kirschenbaum, M., Applying Techniques to Skeletons, in: Constructing
Logic Programs, J.M.J. Jacquet (editor), John Wiley & Sons, 1993

[16] Sterling, L. and Lakhotia, A., Composing Prolog Meta-Interpreters, in: Proceedings of 5th
International Logic Programming Conference, Seattle, 1988

[17] Sterling, L. and Shapiro, E., The Art of Prolog, The MIT Press, Cambridge,
Massachusetts, 1986

[18] Wilson, M., Borning, A., Hierarchical Constraint Logic Programming, TR 93-01-02a,
Department of Computer Science and Engineering, University of Washington, May 1993

[19] Yalçinalp, L.Ü. and Sterling, L., An Integrated Interpreter for Explaining PROLOG’s

Successes and Failures, Case Western Reserve University, CES TR-88-04, April 1988

19

