Opmaker2: Efficient Action Schema Acquisition

T.L.McCluskey, S.N.Cresswell, N. E. Richardson and M.M.West
School of Computing and Engineering
The University of Huddersfield, Huddersfield HD1 3DH, UK

Abstract

The problem of formulating knowledge bases contain-
ing specifications of dynamic knowledge is a barrier to
the widespread uptake of AI planning. Machine learn-
ing has been used with some success in the past, but the
inputs required are either too detailed, or the learning
process has required many examples. Further, learn-
ing has been confined to propositional actions or parts
of actions such as preconditions. The field of ontolog-
ical engineering has had an impact on the wider com-
munity in that application ontologies (which contain
“static” structural knowledge of applications) are be-
coming widespread. Here we introduce a methodology
that is based on the existence of a strong structural
model of an application. Using a small number of user
training sequences, we illustrate how the method can
induce action schema and compound methods. To do
this we extend GIPQO’s Opmaker system so that it can
induce actions from training sequences without inter-
mediate state information and without requiring large
numbers of examples. This method shows the poten-
tial for considerably reducing the burden of knowledge
engineering, in that it would be possible to embed the
method into an autonomous program (agent) which re-
quired to do planning. We illustrate the algorithm as
part of an overall method to induce structured domain
model, and comment on initial results that show the
efficacy of the induced model empirically.

Introduction

The problem of formulating knowledge bases containing
specifications of dynamic knowledge is a barrier to the
widespread uptake of AI planning. Current high pro-
file applications such as the use of planning technology
within NASA’s Mars Rover require persistent resources
comprising of teams of highly skilled knowledge engi-
neers, In particular, a problem facing Al is to overcome
the need to hard code and manually maintain action
schema within agents (a problem which limits their au-
tonomy). It is possible to use learning techniques to
help overcome the problem, eg using tools which induce
actions or methods from examples. One method is to
embed agents with the ability to induce the detailed

specification of action schema from example planning
traces, possibly supplied by a trainer. Planning traces
are an ordered set of action instances, where each ac-
tion instance is identified by name plus the object in-
stances that are affected or are necessarily present but
not affected, by action execution. This is the kind of in-
formation normally expected as a solution to planning
problems.

In this paper we describe the results of an investiga-
tion into (re)constructing action schema and planning
heuristics from training sessions which compose of a
handful of action traces. The main result is that it
is possible for an agent to induce detailed specifica-
tions of action schema from single action traces auto-
matically, without requiring intermediate state infor-
mation for each training example. The trade-off is that
the agent’s domain description should contains invari-
ants describing object relations and object states. The
induced actions are detailed enough for use in plan-
ning engines. We present an algorithm for generating
such domain models, and show how the primitive action
schema can be built up into domain models.

In our previous work we have shown how ‘flat’ do-
main actions can be induced from examples. Actions
can be induced using Opmaker (McCluskey, Richard-
son, & Simpson 2002) which has been embedded in-
teractively in GIPO (Simpson et al. 2001), (Simpson
2005). GIPO aids domain construction, offering edi-
tors, validation tools, a graphical life-history editor and
planning tools. Output from GIPO is the completed
and validated domain being modelled in a variant of
GIPO’sinternal language OCL (Liu & McCluskey 2000)
or PDDL. Here we extend GIPO’s Opmaker system
so that it can induce actions from training sequences
and its static object model alone, without intermediate
state information and without requiring large numbers
of examples. This considerably reduces the burden of
knowledge engineering, so that a program (agent) can
perform knowledge acquisition rather than it occurring
through a human-driven process supported by a tool
such as GIPO.

The rationale for setting up this problem is as follows.
The acquisition / refinement of factual or static knowl-
edge by agents is relatively straightforward. In the con-
text of the internet and open systems, it is not un-
reasonable that an agent can acquire and refine such
knowledge with some degree of autonomy. The rapid
expansion of globally accessible ontologies within stan-
dard formats such as OWL, support the notion that
intelligent agents will have access to factual knowledge.
In contrast, the amount of effort needed to encode bug
free, accurate action specifications and planning heuris-
tics, and to maintain them, is significant. A necessary
precondition of the use of current automated planning
technology is that there exists a detailed action specifi-
cation, and in many cases, heuristic knowledge. Hence
we can ask the question: for every agent that can per-
form planning, must we hand code and hand maintain
its action descriptions? No, if agents are to achieve
this kind of autonomy, then they should be capable of
learning and refining action knowledge and heuristics.

The Learning Problem

The general situation is one where an agent needs to
perform reasoning about actions to achieve a desired
goal, and in particular perform plan generation within
an environment that it has knowledge of. Actions are
real world operations that change the state of object(s)
in the world in some way. The agent has knowledge
of objects, and collections of similar objects making up
distinct classes. It knows the possible states of a typical
object of each class. It has knowledge of existing plans
that other agents, or a trainer, has used. These plans
are written in terms of verbs and affected objects (pick
up block A with gripper B, lift up wheel A with jack
B). Additionally, the agent is assumed to have axioms
describing a naive physics of the world. However, the
agent has not an explicit specification of actions in such
a way that it can reason about their synthesis (or the
agent does have such a specification but needs to refine,
maintain or evolve it).

Given this situation, the learning problem is to induce a
full parameterised specification of actions which can be
used to do planning; and to induce heuristics which can
be used to make the reasoning involved in the planning
computationally tractable. Further, the agent should
be able to refine any existing parameterised specifica-
tion of actions, and heuristics, that it currently holds.
The action specifications should be detailed enough so
that they can be input to mainstream planning tech-
nology as epitomised by competitors in the IPC (the
bi-annual international planning competition).

A Formulation of the Problem

We formulate the learning problem as follows:

INPUT: Assume the input to the learning problem is
a ‘model’ of the world, and a set of training sequences,
given as follows:

1.1 - there are a number of classes each containing a set
of objects, each object belongs to one set (called a sort)
1.2 - each object of each class may be related to objects
of other classes, and have property - value relationships
with set of basic values (boolean or scalar). The rela-
tions and properties are defined in the usual way using
predicates.

1.3 - each object of each class at a moment in time
has a fixed ‘state’. This state is defined by its relation-
ship with other objects and/or the value of properties.
There are a small, finite number of states for each ob-
ject class.

1.4 - there is a set I of invariants relating the predicates
given above. Informally, a set is adequate if any ‘com-
mon sense’ inference can be made from them, such as
normal inferences about spatial relations.

1.5 a set of training plans of the form

(initial state, final state)
namey p1, 01
namesz pa, 02

nameg Pq, 0q

name;..name, are the names of the ¢ actions in the
training plan, and they are assumed to transform the
initial state into the final state. Here p1, p2,..p, are each
lists of object names (they could be null) of unchanging
or ‘prevail’ objects required by an action, and o1, 02, ..04
are each lists of object names affected by the execution
of the action. Each of the list of prevail objects must be
present in some state, but that state does not change
during action execution.

- a (possibly empty) set of existing action schema.
Within this formulation, action schema are parame-
terised object transformations.

OUTPUT a set of action schema that - is consistent
with the static domain model components (1.1 -1.4); -
can be instantiated into the training plans (1.5) sup-
plied, and will transform the initial state into the final
state heuristics derived from the training plans that can
be used to guide a planner

Method

The learning method is specified by the algorithm de-
scription in Figure 1. In outline, the method is:

(i) use a set of heuristics and inferences to track the
changing states of each object referred to within a train-
ing example, taking advantage of the static, object-
state information and invariants within the domain
model. Infer full details of object transitions for each

program Opmaker2
In partial domain model

In training sequence SE@ with N actions, and each e € SEQ has components:

e.Name, e.prevail, e.changing = name, unchanging objects, changing objects,
Out parameterised action descriptions and HTN methods

1. Definitions:

O.c = current state of an object O
0O.s = sort of object O

O.f = final state of an object O

2.for each e in SEQ do

7. end

S9 = state class of any ground state S
07 = a distinct parameter which ranges through the sort of object O
X, = set of all sorts of parameters and objects in expression X

3. Form P = list of 07 for all O in e.prevail U e.changing;
4. for each O in list e.preval do

5. store component of the prevail (0.s, 07, 0.¢?)

6. end for

7. for each O in list e.changing do

8. if O is not affected by actions in the rest of SEQ

9. then let X = O.f¢

10. else choose X from the state classes of O.c such that
11. X # 0.c¢? and P, contains X,

12. store transition T = (0.s, 07, 0.¢? = X)

13. match free vars in T with those in P

14. end for

15. form actions from cross-product of all stored transitions
16. such that the actions are consistent with invariants

17. end for

18. produce a method from the sequences of actions as in Opmaker.
procedure match free vars in T with those in P

1. repeat

2. for each parameter z in transition 7, z # O,
3. choose a parameter y in P to match with
4. z such that y # O, sort(z) = sort(y),

5 end for

6. until parameter match set is consistent

Figure 1: Outline Design of the Opmaker2 Algorithm

dynamic object.

(ii) use the techniques of the original Opmaker algo-
rithm (McCluskey, Richardson, & Simpson 2002) to
generalise object references and create parameterised
operator schema, from the specific object transitions ex-
tracted in (i) from the training examples.

To illustrate the main innovations of the method, we
will use an example walk-though taken from our empir-
ical evaluation involving an extended tyre-change do-
main. Assume a training sequence SEQ is input into
Opmaker2 and this has components as follows:

name: do_up; prevail: wrench0,jackO, trim1; changing:
hub1,nutsl

name: jack_down; changing: hubl,jack0

name: tighten; prevail: wrenchQ,hubl,trim1; changing:
nutsl

name: apply_trim; prevail: hubl; changing:

trim1,wheel5

This illustrates a short procedure for making a car
wheel ready for operation once it has been hung on to
an appropriate wheel hub. Informally, do_up is the op-
eration of putting the nuts on the hub of a wheel when
it is jacked up. The names such as wrench(, hubl are
references to actual objects. The prevail objects have to
be necessarily present in a particular state but remain
unaffected (‘wrench(’ is available, ‘jack0’ is jacking up
the wheel, ‘trim1’ is hub1’s wheel trim and has to have
been removed). These objects need to be in particular
states for the action to execute, and those states ‘pre-
vail’ or stay the same during execution of the action.
The ‘changing’ objects change state (hubl becomes fas-
tened up, the nutsl are fastened up).

To illustrate some of the definitions in Line 1 of the
algorithm in Figure 1, we have components of an object
as follows:

hubl.c = [unfastened(hubl),

jacked _up(hubl,jack0)]
hubl.f = [on_ground(hubl), fastened(hubl)]
hubl.s = hub

Examples of other operations are (h and j are parame-
ters):

hubl.c9 = [unfastened(h), jacked_up(h,j)]
hubl.c, = [hub,jack]

Line 2 iterates through all the training examples. For
the first training example, the problem is to determine
what the new states are of hubl and nutsl.

In Line 3, let P = [w, j, t, n, h]. In Lines 4-6, the prevail
components are got from the current state classes of
wrenchQ, jackO and triml, as in the original Opmaker
algorithm. The loop starting on line 7 is intended to
determine the destination of each object that is changed
by the action being learned. hubl is the first changing
object. From the given partial definition of the domain,
it has four state classes which we name S1-4:

S1 = [on_ground(h),fastened(h)],

S2 = [jacked_up(h,j),fastened(h)],

S3 = [free(h),jacked _up(h,j),unfastened (h)],
S4 = [unfastened(h),jacked _up(h,j)]

hubl’s current state is not necessarily its final one, as
in the training sequence it is referred to again (in the
second of the sequence, jack_down) as a changing ob-
ject. Hence line 10 is executed. X cannot be S4 (since
this is currently the generalisation of the object’s cur-
rent state, and the object has to change state class).
In Line 11 Py (= [wrench, jack, trim, nuts, hub]) con-
tains all the sorts in each of state classes S1,52 and S3,
and so this does not narrow down the choices. Hence 3
transitions are stored:

(hub, h, [unfastened(h),jacked_up(h,j)] =
[on_ground(h),fastened(h)])

(hub, h, [unfastened(h),jacked_up(h,j)] —
[free(h),jacked _up(h,j),unfastened(h)])

(hub, h, [unfastened(h),jacked _up(h,j)] —
[jacked_up(h,j),fastened(h)])

Tteration of line 7 with object nutsl occurs next. It has
three states:

T1 = [tight(N,h)]
T2 = [loose(N,h)]
T3 = [have_nuts(N)]

This leads to 2 possible transitions:

(nuts, N, [have_nuts(N)] — [tight(N,h)])
(nuts, N, [have_nuts(N)] — [loose(N,h)])

and hence 6 possible induced action schema (line 15).
These six options are then checked for consistency with
the domain invariants which are shown in Figure 2. The
conjunction of state constraints in both the LHS and
RHS of transitions of the newly formed action schema
must be consistent with these invariants. In cases where
they are not, the action schema is discarded.

This reduces the number of options to a single action
schema. Processing of the other 3 actions in the train-
ing sequence leads to a single interpretation of state
changes, as the changing objects involved are all in
their final states, and hence 3 more generalised action
schemas are generated. Finally, a hierarchical method is
generated (line 18) by combining the 4 action schema in
a similar fashion to the original Opmaker system (Mc-
Cluskey, Richardson, & Simpson 2002).

Experiments and Results

The method has been implemented and merged with
the original Opmaker system. We are using the same
experimental approach as we used to test the original
system:

o We hand-craft training sequences from a range of do-
mains selecting actions that will build sensible meth-
ods for that domain.

¢ We use Opmaker2 to induce actions and hierarchical
(HTN-type) methods from the training sequences.

e Using standard planners, we compare performance
using old hand-crafted action schema to the use of
induced schema.

Success will be judged using the following criteria:

e If a valid set of unique new actions is defined as ac-
tions that can solve the same problems the original
training sequences were aimed at, can Opmaker2 in-
duce these without having to encode a great deal of
invariants into the domain models?

e Is it more efficient in terms of effort time to construct
a domain using Opmaker2?

e Is it at least as efficient, in terms of planning time,
to reach goals using Opmaker2 defined actions and
methods?

Up to now we have experimented with 2 domain models:
the extended tyre world, and the hiking domain (see
http://planform.hud.ac.uk/gipo/ for details of these).

Since induction sequences deliver several actions and a
single method, initial sequences were tailored to pro-

. Equivalence between hub fastened and nuts tight/loose on hub.
V H:hub . [fastened(H) <= 3 N:nuts . (tight(N, H) V loose(N, H))]

. Equivalence between jack_in_use and jacked_up.
Y H:hub .V J:jack . [jack_in_use(J, H) <= jacked_up(H, J)]
. Equivalence between hub not free and wheel_on hub.

YV H:hub . [free(H) <= 3 W:wheel . wheel_on(W, H)]

. Equivalence between trim_on_wheel and trim_on.

V T:wheel_trim .V W:wheel . [trim_on_wheel(T, W) <= trim_on(W, T')]

. Only a single set of nuts can be on a hub.

(tight(N1, H) V loose(N1, H))
YV H:hub .V Ni:nuts .V No:nuts . A = (N1 = No)
(tight(N2, H) V loose(N2, H))
. Only a single wheel can be on a hub.
wheel_on(W1, H)
Y H:hub .Y Wi:wheel .Y Wa:wheel . A = (WL = W)
wheel_on(Wa, H)

. Domain constraint: If nuts are tight on a hub then the hub must be on the ground.

V H:hub . [(3 N:nuts . tight(N, H)) = on_ground(H)]

. Domain constraint: if a trim is on a wheel, then the wheel is on a hub and the nuts are tight.

V W:wheel . 3 T:wheel_trim . [(

trim_on_wheel (T, W) =
I H:hub . wheel_on(W, H)) A (3 N:nuts . tight(N, H))

Figure 2: Invariants encoded in the Extended Tyre World

duce a meaningful method, and sufficient initial se-
quences were composed to cover all the major sub-tasks
that could be required by the domain. In each case the
agent began by knowing domain knowledge but had
sketchy or non-existent facts about its potential actions.
For the Extended Tyre World we devised 7 sequences
of between 2 and 5 actions in length. After adding 8 in-
variants to the domain we induced a set of actions and
methods and using these we produced a domain with
22 actions and 7 methods. The new version was tested
over 8 tasks in two ways - firstly using just actions in
the planning and secondly using either just methods,
or a combination of methods and actions. To illustrate
the results, two of the actions that were induced from
the running example were as follows:

operator (jack_down(Hubl, Jack0) ,
0,
[sc (hub,Hubl, [jacked_up (Hubl, Jack0),
fastened (Hub1)] =>
[on_ground (Hub1) ,fastened (Hub1)]),
sc(jack,Jack0, [jack_in_use(JackQO,Hub1)] =>
[have_jack(Jack0)1)1, [1).

operator (tighten(WrenchO,Hubl,Nuts1,Triml),
[se(wrench,WrenchO, [have_wrench(Wrench0)]),
se (hub,Hub1, [on_ground (Hub1l) ,fastened (Hub1)]),
se(wheel_trim,Triml, [trim_off(Trim1)])],
[sc(nuts,Nutsl, [loose(Nutsl,Hub1)] =>

[tight (Nuts1,Hub1)1)1, [1).

Where just actions were used in planning, plan times
for short plans of up to 10 to 12 actions were about
the same as for the hand-crafted version of the domain.
For plans longer than 12 actions both versions took in-
creasingly long times to solve. However where methods
or combinations of actions and methods were used plan
times were significantly shorter. The full planning prob-
lem for this extended domain is defined to be: “A car
is found to have two flat tyres, one is found to be flat
and can be fixed by use of the pump, whilst the other is
punctured and requires the full tyre change described in
the previous version of the domain”. Using just actions
no solution was found to this problem after 36 hours but
using methods and just a few actions a correct solution

was found after 11 seconds.

Experimentation with the hiking domain is at an ear-
lier stage. As yet no invariants have been added to
the domain. Without these we do not get unique sets
of example material for induction but already we have
seen actions generated. We identified 5 potential meth-
ods for this domain and for four of these we obtained
example sets of no larger than 6. However the fifth
generated 28 example sets so either a set of invariants
will be added to the agent’s knowledge, or we will use
theory refinement to reduce the example sets further.

From the results obtained so far we can conclude that
an agent, given a ‘working stock’ of potential action
sequences, and having domain knowledge and a ‘belief’
about the states of objects it ‘knows’ about will be able
to generate its own examples and use them to supply
itself with parameterised actions to suit every possible
object combination. Since methods can be formed from
the action sequences the agent should be able to plan
efficiently and autonomously.

Related Work

The authors of (Garland, Ryall, & Rich 2001) have de-
veloped a system (Collagen) which learns task models
from examples. Their work is similar to ours in that
they show orderings of the task to achieve the task and
these contain both primitives and non-primitives. In
(Wu, Yang, & Jiang 2005) the authors describe ARMS,
a system in which operators are learned without the
need for user intervention. However ARMS requires
many training examples containing valid solution se-
quences, and presently is capable of inducing only ‘flat’
domains.

Our work is also aimed at learning domains containing
both action schema and hierarchical schema (methods)
encapsulating several schema. Practical planning do-
mains are based on ‘hierarchical task network’ (HTN)
decomposition. The chief difference between the HTN
paradigm and classical domains is that in the former
‘compound’ tasks can be decomposed into the simpler
‘tasks’ particular to classical domains. However HTNs
can be difficult to construct manually and authors have
worked in producing these using methods from machine
learning. In (Erol, Hendler, & Nau 1996) the au-
thors argue that HTN operators are more expressive
than those of classical domains as well as being more
efficient. Theoretical underpinning for ‘High Level Ac-
tions’ (HLAs) is presented in (Marthi, Wolfe, & Russell
2007). Each HLA admits one or more refinements into
sequences of actions, where an action might be high
level or primitive. The paper introduces a provably
sound and complete algorithm which is implemented
using a STRIPS-like language. The algorithm takes
advantage of ‘sound and complete’ descriptions and, if

successful, returns a primitive refinement of some high-
level plans that achieves the goal set from the initial
state.

In (Nejati, Langley, & Konik 2006) the authors describe
how they induce teleoreactive logic programs from ex-
pert traces. The teleoreactive programs index methods
by the goals they achieve. They use methods derived
from explanation based learning to chain backwards
from the end result of the sample trace. The expla-
nation structure thus obtained is retained to produce
new hierarchical structures. The method is applied to
‘Depots’ which involves crates that can be loaded into
trucks and stacked. However the domain so constructed
resulted in the successful solution of very few problems.

Further theoretical work on HTN planning is presented
in (Ilghami et al. 2005). This paper introduces a for-
malism whereby situations are modelled where general
information is available of tasks and sub-tasks, together
with some plan traces but there are no details. In the
early work all information about methods was required
except for the preconditions. This limitation is over-
come in later work by the same group (Ilghami, Nau, &
Munoz-Avila 2006) a new algorithm ‘HDL’ (HTN Do-
main Learner) is presented which learns HTN domain
descriptions from plan traces. Between 70 and 200 plan
traces are required to induce the descriptions.

HTN-MAKER is presented in (Hogg & Munoz-Avila
2007). This receives as input a STRIPS domain model,
a collection of STRIPS plans and task definitions and
produces an HTN domain model. The experimental
hypothesis is that after a few problems have been anal-
ysed an HTN domain model will be ultimately obtained
able to solve most solvable problems. A version of the
logistics-transportation domain is chosen for the exper-
iment and good results are obtained. However these
good results are not replicated for the blocks-world do-
main. One problem is the large number of methods
which have to be learned, where one method might sub-
sume another. They suggest choosing the most general
method where this is the case. Another problem is for
the planner to use methods in an infinitely recursive
manner.

Conclusions

Our work and the results reported here depend on a
structured view of domain knowledge about objects be-
ing available. Whereas in propositional, classical plan-
ning states are fairly arbitrary sets of propositions, we
assume that the space of states is restricted in that ob-
jects are pre-conceived to have a fixed set of plausible
states. Within this framework, we have described a
method for inducing action schema that advances the
state of the art in that it requires no intermediate state
information, or large numbers of training examples, to

induce a valid action schema set. Further, our prelimi-
nary results show that the hierarchical methods induced
with the action schema can lead to more efficient do-
main models.

Opmaker2 is an improvement on Opmaker in that the
latter requires intermediate state information during
learning. Opmaker2 automatically infers this interme-
diate state information and then proceeds in the same
fashion as Opmaker and induces the same operator
schema. Opmaker2 can logically be seen as a super-
set of Opmaker, where the extra functionality in Op-
maker2 removes the need to ask the trainer for more
information.

Our experiments with the “Hiking Domain” show that
further development needs to be made to the Op-
maker2 algorithm so that it can cope with domains with
“static” knowledge.

References

Erol, K.; Hendler, J.; and Nau, D. S. 1996. Complexity
Results for HTN Planning. Annals of Mathematics
and Artificial Intelligence 69-83.

Garland; Ryall; and Rich. 2001. Learning hierarchi-
cal task models by defining and refining examples. In
Proceedings of the First International Conference on
Knowledge Capture.

Hogg, C., and Munoz-Avila, H. 2007. Learning Hierar-
chical Task Networks from Plan Traces. In Proceedings
of the ICAPS’07 Workshop on Artificial Intelligence
Planning and Learning.

Ilghami, O.; Nau, D. S.; Muoz-Avila, H.; and Aha,
D. W. 2005. Learning preconditions for planning
from plan traces and HTN structure. Computational
Intelligence 21(4):388-143.

Ilghami, O.; Nau, D. S.; and Munoz-Avila, H. 2006.
Learning to do htn planning. In Proceedings of the Six-
teenth International Conference on Automated Plan-
ning and Scheduling, 390 — 393.

Liu, D., and McCluskey, T. L. 2000. The OCL Lan-
guage Manual, Version 1.2. Technical report, Depart-
ment of Computing and Mathematical Sciences, Uni-
versity of Huddersfield .

Marthi, B.; Wolfe, J.; and Russell, S. 2007. Seman-
tics for High-level Actions. In Proceedings of the In-

ternational Conference on Automated Planning and
Scheduling, ICAPS 2007.

McCluskey, T. L.; Richardson, N. E.; and Simpson,
R. M. 2002. An Interactive Method for Inducing Op-
erator Descriptions. In The Sixth International Con-
ference on Artificial Intelligence Planning Systems.

Nejati, N.; Langley, P.; and Konik, T. 2006. Learning
hierarchical task networks by observation. In ICML
’06: Proceedings of the 23rd international conference

on Machine learning, 665-672. New York, NY, USA:
ACM Press.

Simpson, R. M.; McCluskey, T. L.; Zhao, W.; Aylett,
R. S.; and Doniat, C. 2001. GIPO: An Integrated
Graphical Tool to support Knowledge Engineering in
AT Planning. In Proceedings of the 6th European Con-
ference on Planning.

Simpson, R. M. 2005. Gipo graphical interface for
planning with objects. In Proceedings of the Interna-
tional Conference for Knowledge Engineering in Plan-
ning and Scheduling.

Wu, K.; Yang, Q.; and Jiang, Y. 2005. Arms:
Action-relation modelling system for learning acquisi-
tion models. In Proceedings of the First International
Competition on Knowledge Engineering for AI Plan-
ning.

