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Remarks on Denjoy sets.

Denjoy sets are sets of natural numbers corresponding to resls,
which ere interesting from the point of view of the theory of diffe-
rentiation of constructive real functions. In my talk, some results
concerning the structure of T~ and tt-degrees containing Denjoy sets
are presented. Methods of recursion theory and those of constructive
mathematicel analysis have been combined in the corresponding proofs.
Ilet, s ,v, w, X, y end 2z be variables for natural numbers
(s}, 4, B and C - veriebles for sets of NNs, G end
for binery strings (i.e. finite sequences of 0°s and l's) s X end
I for reals.

We are supposed to have a fixed numbering of all binary strings
(‘fx denotes the string with number x ) such that, for any NNs x
end y , if the string J % is either shorter than fy or preceding
it lexicographicelly then x 'y, For eny set S of binary strings
SE denotes the class of all sets of NNs extending strings from S.
we put A} = {‘fx s xéA} 0

We useAstanderd notation for indexing of all pertial recursive
functions L"(‘PRE‘S) srecursively enumerable (r.e.) sets of NNs and tho-

se of their relativizations (A-PRFs, A-r.e, sets) - ?y ’ Wy s W; .

A Ag.s
W s
‘fy ’ w:j‘ » Y
Binary expansions of reals give us a many-to-many corresponden=-
ce between reels and sets of NNs. For eny set A of ENs, we denote

by r, the sum of the series ézA 2~x~1 end, for eny real X
x

we denote by Set(x) the infinite set B of NNs for which X - Iy
equels to an integer. Using reals to study sets of HNs we can rest=
rict ourselves to reals from the closed unit interval E),J o A real
X 1is said to be A-recursive if Set(x) éT A holds. In constructive
mathematics im Markov ‘s sense we study, smong others, constructive
reals (i.e. codes of P-recursive reals) end everywhere (i.e, for

any constructive real) defined constructive functions of a real va -

riable (briefly: congtructive functioni) o Let us remember thet any

constructive function is en slgorithm trensforming equal constructi-
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ve reals into equals onefend it is constructively continuous (i.e.
continuous with en f-recursive function being a corresponding modulus
of continuity) at eny constructive real (cf. Kﬁéner [1984:]). Construc:
tive functions constant on both (—oo ,Oj end E,,*-oo) we briefly call
c-=functions. It has turned odt that, in constructive mathematical
analysis o it is necessary to study also the behaviour of constructi-
ve functions in neighbourhoods of reals being non-m(ﬂ-recursive). In
this connection, for any constructive function F and for smy real
X , we have defined the lower (class-ical ) derivate and the upper
(classical) derivate of F at X ( and denoted them by _]_)_F(X) and
ﬁ_F(X) ’ respectively) using, on account of the continuity of/gonst—ruc,-
tive functions at constructive reels, velues of ¥ at ratibnal nuRE-
bers only.

K constructive function is maid to be constructively uniformly
(or ﬂ-—uniformly) continuous if there is an f-recursive function be-
ing a modulus of its uniform. continuity. As hem proved Zaslavskij,
any monotone c-function is f-uniformly continuous.

For any constructive functiom F we denote by R[F] a classi-
cel function of a real veriable being meximal ( as to domain) continu-
ous (with respect to its domain) extension of F . Let us recall:
For any c~function F , (F is classically uniformly continuous ><==>

F is # -uniformly continuous)@ (RLF] is defined at any £  “-re-
cursive real)f—‘—>(R[F] is defined at eny real ) holds. Sacks [1963_]
introduced Lebesgue measure for clesses of sets of NNs. Obviously,
for eny set S of binary strings, the class SE is measurable / let
CA(SE) denotes itsheasure) o The concept of f-measurability (i.e.
constructive measurgbility ) and its relativizétion have been intro-
duced in constructive mathematics (D'enmth 5969] aend 5982& ) and
in recursion theory (Demutb [l 988A,B] + Here, we remind the wey of
j@&g—g)ucing these concepts for specisl classes of sets of MS onlye
AY function f 1is called a modulus of measurability of {IH)E

i v"(f(v)év :>'¢4(< wg,r(v)}E) - @(‘fwﬁ")’E)léyz.v)

holds. The class w;}E is said to be B-measurable if & 'é'.! B
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holds and there is a B-recursive function being & modulus of measura-
bility of it. Let us note that the class <VI§ )E is necessarily
A’-measurable but it cam be non—-(A-measurable) ( ef, Specker s exemple) o
In fact, this class is A-measurable if and only if its measure is enm
A-recursive real, The utility of this approach for recursion theory
shows the following result.

Lemma 1, For any B-measurable class {Wﬁ}E and eny binary
string G such that t:«({w;}E)<cc({G‘}E) s there is @ B-recursive
set C in the difference {G}E AN {Wé}E .

A class M of sets of NNs is said to be of B-measure zero if
there are two B-recursive (or,, equivalently, recursive) functions

& end h of one variable such that, fo;:' eny NN x , the class
<w§(x)>E contains M , its measure is less than 2™~ and the func-
tion LPE(X) is a modulus of its measurebility.

Remerk 2. 1) The predicates {W; }E) > 27V of veriebles
s, vend y and ({W;} covers 7°) {i.e. 4?,’}3 - <fw;}>E )of
veriables s, y end ¢ are, obviously, recursive andttényA }E)> 27V
and (4{ W? > covers 7 )are A-recursively enumerable.

2) Let k ©be a recursive function of two veriables fulfilling

it
k;(x,s) =C4,y (the length of a; is x and is not covered by <f\?’8c>

or Sy is a string of x 1°s ) o Thus, for any NN x, the recur-
sive sequence -{ k(x,s)}'s is non-decreasing and contains NNs from
on
{v :2¥ -1 £ ¢ £ 2% -2}}’&11 » consequently, Card ({s t k(x,s) #

X
k@:,s+1)}><2'x . Hence,y 1im k(x,s) is an #’-recursive fuction

8o J
t&(‘{{ 1i>%d k(x,s)}}E =2 for any NN x and the class
teon S = E
no Li L{1im k(x,s)})’ is of #'-measure zero. It can be easily
v= X>V 8Svoo -

shown that this class contains any set of KNs which T-degree is hyper-
immune~free.

A set S of binary strings is called e covering if it is r.e,
end the class SE containsg all recursive sets. A set A of HNs is

called a semigeneric set Cnemuth [1 98?‘9) if it &s nom-recursive and
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AEESF holds for any covering S . Let us notice that semigenericity
is a generalization of week 1-genericity introduced and studied by
EKurtz [}983] which - has proved.that a T=degree contains & weakly
l-generic set if end only if it contains a hyperimmune set. Let us
notice that the class of all weakly l-generic séts is of f-measure
zero. Results on semigeneric sets cgn be found in Demuth [}981#{]
and Demuth,Kulera [1987 ] o Here we remind a few ef them .only. ‘
Bemark 3. 1} Any set of HNs tt-reducible to a semigeneric set
is either semigeneric or recursive. Thus, the ¢lass of all non-recur-
sive non-semigeneric T-degrees for, tt-degrees/ is closed upwards ,
Any hyperimmune set is semfgeneric, but, there ere semigene-
ric sets inm some hyperimmune-free &;grees. The class of all semigew
rierie P-degrees f%rw tt~d$grees)'is not closed upwards.
Definition.Let z be @ RN, A set A of NNs is called
(a) a Denjoy set if there is no constructive function F such
that p_F(nm) = +0o9 halds}
(b) an AP-gset if there is a recursive function f such that
AE (Wf(x)>E and @,({Wf(x)}E) £2™% hold for eny NN x
the term "effectively approximable by Z: classes in measure® was
introduced by Kulera E 985]);
(¢) e HAP-set if it is not en AP-set;
(d) a z=WAP-set (z-weakly approximeble ...) if szvis a totael
function end there is a recursive function g of two verisbles such

that
VX(Card({y : g(x,y)#z(xwyﬂ)»f}”z &) &
X CL<<ng>moo SCx,y))’E) <27 )

and ' .
(2) Card({x : A&(wm s(x,,y))’E }) = +00 3
oo

(e ) @ WAP-get if it £ & y-WAP=-gset for some NN y ;
a RWAP-get if it is mot a WAP-set,
Let us notice thet the classes of arithmetical reals correspon-

ding to these types of sets were Introduced in Demuth [1982A]
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Remerk 4. 1)Any AP-set is, obviously, a WAP-set and, according
to Demuth [1 97513] , eny non-Dénjoy set is necessarily an AP-set.,
Thus, any NWAP-set is a NAP-set eny any NAP-set is a Denjoy set.

2> There is a recursive function e such that, for any KN x ,
the set <we(x)>is a covering, the class <f\'i9u>>E contains all
AP-sets and its measure is less than 2~* (Harti-lb‘f [1970:),
Demuth E975_Aj}. Hence,. any 'senrigeneric set is em AP-set and the
class of ell AP-sets is a "ﬂ'g class of b"-measure Zero.

3) For any class M of sets of NNs of f-measure zero we can
find an increasing constructive function G fulfilling gG(rA> =
+ o0 for any set A from X e On the other hand,there are sets
of NNs being both Denjoy sets and AP-sets emong semigeneric sets
and emong non-semigeneric sets, too CDemutb [198’7@1) . It can be
shown thet sueh sets are even  im r.e. tt-degrees. ‘

4) The class of all WAP-sets is of 0 -measure zero(Demuth E982AJ>
If we replace the condition {2)in the definition ef z-WAP-sets by

(3) Vx(Aé’{{Wlm g(x,y)>E) >

y—> oo
we 'c:htégin another class of sets. We will cell these sets z-WAP"-sets

and define WAP®-gsets in the wey emelogicel to that used in Ce > -
According to Demuth [1982A]there is & recursive function f of

oo Ho E
two varisbles such thet the class (J (O < w is of
' x=0 y=0 £(x,y

g ~meesure zero and contains 211 WAP®-sets. It has been shown in
the paper that for each class of the Just described type we can
e used

construct an f -recursive WAP-set being not in it. éﬁé{ﬁg%hod is

as follows: We construct a recursive function g of two variables
such that, for any NN v, the seqguence a{g(&,ZZ}Z is non-decreas-

on
sing eand containing NNs from.-{é : 2V ~14s < 2% -%} g le€e
the length of 54

g(v,z) is v for eny NN =z , end, in addition,
the o
if v is positive and,fon'finite incre&sing sequence {ni} $=0 of
m n .
NNs satisfyingv= = Z i » the measure of @ -measurable classes

n i=0
i .
M 4 w’f(i 3)>E is sufficiently smell for 0<ifm them the mea-
j=0 . $
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sure of the intersection of the classes U (\ < Ve (i 3)>
P

B
E
and (glim g(v z;\( is smell with respect toCL({ 1im g(v’z)\g ‘
2, -9 &6
Then we find an 4 ‘erecursive function. h of one varisble such that

{b (s)}‘ is an increasing sequence of NNs fulfilling the descri-

binary N

bed nconditions and such thatQE%EWQfFE;g with number 1im g(h(s+4},z
additiiona A -
is en extension of the string with number 1im g(h(s),z ). This
AS or @ s
is possible because of ﬂ'-decidability of corresponding properties.
This example shows that we can obtain WAP-sets with specisl proper-
ties using standard tree-methods and oracle constructions. We have
seen that the replscing of the condition (2) by (3:)in¢the defini-
tion Cd) would chenge the situation stronglye.
ﬁ) The preceding points show that any of the classes - of

all semigeneric sets,, all nnn-D?njoy sets, all AP-sets and all
WAP-sets =~ is of f -measure zero and camnot be of f~measure zero.
Thus, O-almést any set of RNs is a NWAP=-gset, The class of all

a/__ n
non-Denjoy sets is a 2'0 clags being neithegv \’g DE:;;fgf some NN
clas

[ 4
n nor e ‘ﬂ'3 class. The class of all WAP-sets fs b > 0,0
3

class end a :Z_Q class being neither a TTG cless nor &

"TO 8@ class for some NN n { Demuth [ 9823') 1 88}3"3)

4msj
It is useful to divide the class of all Denhjoy sets into three

classes: the class ;31 of all sets being both Denjoy sets and AP-
sets;s the class il(z of all sets being both NAP-sets and WAP-gsets
end the class i273 - class of a11 NWAP-gets.

Properties of reals corresponding to sets of the introduced
types heve been studied in constructive mathematics.

Theorem: 5. I)Por any @-uniformly continuous c-function F
and any Denjoy set A the Denjoy relations for Dini derivatives
- see Thomson [}985} - are valid for F at r, (}wmuth [}98é]),
in particular,
(4) QF(rA\ = - oogf'f?(rA) = +°°V-¢>o(p_F(rA\ = ’EF(rA) < + oo
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holds. Obviously, only DBenjoy sets can have the described property
(bemuth[i975§]>. Consequently, any monotone c-functiog has a finite
classical derivative <5rief1y: derivative) at r, for any Denjoy
set A of NNs.

2)There ere a c-function F of classically bounded variation
end a set A of NNs being both a Denjoy set and an AP-éet such that
(4 )is not valid. Let us notice that any c-function of clessically
bounded variation is necessarily ﬁ'-uniformly continuous.

3)Any c=function of classicelly bounded variation has a deriva-
tive at r, for any NAP-set A (bemuth [h97533>.

4)There are an ﬂ'-uniformly continuous c=function F and
a NAP-gset A such that (4) is not velid (Demuth 5976:y. The follow-
ing point shows €E§%£F§£%§ necessarily a WAP-set,

S)For any'c~function F and any NWAP-set A , (4,)13 valid

(Demuth [1983]).

We can use f=-uniformly continuous c-functions for the study of
tt-reducibility of sets of Rﬂs( Demuth [3988A] and [}9888]).
Iheorem 6. There is a class 2? of sets of NNs of P-measure zero
with the following properties:
L) For eny sets & end B of RNs &/
(5) A<, B
implies _
6) (%here is en f-uniformly continuous c-function F such thet
( CRCOEEND
whenever B is not in H
b} (67implies G)whenever A is not in \‘g.

%) The class ;f conteins no bi-infinite set being either recursi=-
ve or of the type (C Jjoin G). As a class of fi-messure zero Ef>
contains no Denjoy set.

Theorem 7. For any f-uniformly continuous c-function F we can

construct a non-decreasing \end, thus,f-uniformly contihuous) c-func-

tion G such that for eny mon-recursive set A , where ry is in
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the range of R[?] s there is a unique set € fulfilling the follow-
ing conditions (a) -(c) .

(a) R[Afg)= r, end C=,4A hold.

(b) ro Is the meesure of any of the following A-measureble class-
es {B. : R[ﬂ(rB S rA} and -{B R[F_‘](rB)<rA}

(c) Let B be a set of NNs fulfilling R[F](rz)= r,. Then
(€ 1s en AP-set) :=>(B is an AP-set) holds end, for eny NN z ,
(€ is @ z-WAP-set ) (B is 8 z-WAP-set) is velid.

Corollary 8, Let A and B be sets of NNs satisfying B:%‘z?
and ﬂ'<:tt A :gtt B . Then there is a set C of NEs such that

A f‘:‘:tt c < e &, (B is a NAP-get )%(C is a NAP-set> and
<B,is a NWAP-set) :§>(C is a NWAP—set:) hold.
Proof. It is sufficient to use A E?tt (ﬁ-joim A) and Theorems 6

and 7.

ut
Now, we list some results abo, the structure of T- and tt-degrees

containing Denjoy sets.

Remark 9. 1) If sets & eand B are T-compsrable then the set
(a Join B) is en AP=-set (Kuéera [19850; if the sets A end B ere
ti-comperable then the set (A-jain B) is in & class of" 6;mgésure'

ZEero {Bemuﬁh]i987&l> end, consequently, it is not a Denjoy set.
2) If at least one of the sets A end B 4is & non-Den-

joy set ( or, as the cease mey be, sn AP=-set, or, a WAP—set) then the
set (A join B) haes this property, too.

3) According to 1) and 2/5no minimel T-degree contains
e NAP-gset and no minimal tt-degree conteins a Denjoy set.

4} There is a hyperimmune-free T-degree containing a
NAP-set (/ The part 2} of Remerk 4 end Theorem 2.4 in Jockusch and
Soare ﬁ 97?1)

Theorem 10(Demuth LJ987AD Under eny hyperimmune=free T-degree

containing a NAP-set there is no minimal T-degree.

Proof. Let A be & nmn»recursi%e set and B a NAP~gset such that

A ‘KT B holds end there is no hyperimmune set T-equivalent to B.
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Lccording to the proof of Theorem 3.12 from Oéifreddi [}98{3, we
cbtain & <tt a £ ¢t B end, by Corollery 8 and the part 3 of
Remark 9, the T-degree of the set A is not a minimsl one.

Remark 11, According to Remark 2, any set conteined in a hyper-
immune-free T-degree is a WAP=set.

Theorem 12 (Demuth [J988é]). Let A be both a NAP-get and a
WAP-set, Then any set B such that A f?T B holds is necessarily
a WAP=-set.

Remark 13. There is & set being both a NAP-set and a WAP-set
vhich is contasined in a r.e. tt-dégteejigisfﬁgg;;m;12, any set B
satisfying #° £, B is a WAP-set.

The classlj2{1 /;.e. the class of all sets being both Denjoy
sets and AP—setg):
1)Any set A from i:i, fulfils §°° égT‘E‘r i.e there is an A-re-

cursive function majorizing any recursive function aslmost everywhere,

where a.e, = for any sufficiently large NN . Hence, there is a hyper-
immune set T-equivelent to A (Martind). ,
2)Let A be a set of NNs satisfying & é;T.EA. Then we have the
following:
a) Phere is a semigeneric set in 1 being T-reducible to A

b) Jf A is @ -recursive then there is a non-semigeneric set
in P:XI being T-equivalent to 4,

c) If the set A is an Q(X+1)-recursive set for some RN x
then there is a set inrzap being T-equivalent to A .

1
Theorem 14. ghere is a minimal T-degree containing a semigeneric

set being both a Denjoy set end an AP-set {;f. the part 3 of Remerk

2/ .

Proof, According to Epstein [5975], Cooper has constructed a
set A which T-degree is a minimal one end £°° = Tﬂk' is fulfilled
It suffices to use 2a).

Example 15, There is & set C of NNs such that c’ = Tsﬁ"

holds and any set T-reducible to € is either recursive or semi-

generic.

The claas(t2§zv [i.e. the class of all sets being both NAP-gets

and WAP-gets /.
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1) For eny set A fulfilling #° £5 & there is a NAP-set T-equi-
valent to it (Kuéera [19853). By Remark 13, such a NAP-gset is necessa-

i

2) There are NAP-sets in hyperimmune-free T-degrees / Remerk 9 //.
According to Remerk 11,they must be in D’z .

Exemple 16‘Demuthf_1987A‘_)). There are & NAP-set A end a set B

such that A < ¢t B -end the T-degree of B is both hyperimmune-free
and NAP-free. This T-degree must be Denjoy free, too. Indeed, as we

have noticed, any member o::f'(z1 is T=-equivalent to & hyperimmune set.

The class(z 3= class od all NWAP-sets.

The class of all WAP-sets is of @ -measure zero ,(part 5 of Re-
mark 4 ). Thus, # -slmost eny set of NNs is mg’B {cf. Lemma 1).
In perticular, most of /in the sense of measure)/ B -recursive sets
are NWAP-gsets.

Theorem 17 (Demuth[i 98881). 1) For any NWAP-set A we have
(& join 8°)Z 4 &° |

2) For any set C of NNs satisfying £~ éT C there is a NWAP-get
A such that &° = (& join #° )=, C is velid.

Now, we turn to the question of the reducibility of members of

different classes smong those introduced by us.

T-reducibility . 1)\;%?-'&egree of & set A , satisfying ﬁ'fT A
end dx <A:_ é‘]: 9("9, contains members c>fi}1 and 0:15‘9,2 s too /see
results about these classes).

2) Let C be a set of NNs satisfying ﬂ"éf C emd ¢ <X ‘I‘ ﬂ(x)
for some NN x. Phen, as we know, there ere & set A from rXB ful-
filling &= p C end, consequently.}a set B from (31 T-equivalent
to A,

3) No member cx:t‘r)?s is T=-reducible to a member of r}/z ﬁ.‘hecrem

have Q
4] As vcvémeady noticed, there are many members o:f.' 3 being

P-reducible to 6° and the T-degree of this set conté'xzrx/s elements fron

. fssee the part 1/.
>, P (%“QZ

12 )
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tt-reducibilitye. 1/ No member of(izfl is tt-reducible to a
NAP=get /&.e. to a member of either(izf or Y}{ ) end no member
of(:Zf s tt-reducible to a member of 3 e
Indeed,, let B be a RAP-set end let 4 < et A <

- B. By Theo~ |
rems & and 7, there ére a non-decreasing [@~uniformly continuoug)c-
function ¢ and a NAP-set C such that RE@CEC) =r, end

(B is a NWAP—set) =>(c 1s a NWAP-get) hold. We use Theorem 5. The
c=-function G ha@@ﬁ&n-megative classical derivative at Ta e If the
derivative is positive then by results from Demuthl}98§] C and A
must be in the same of our three classes, If the derivaetive is zero
then, by Lemma 3 from Demuth[;98é], A cennot be a Denjoy set.

2} Ehere are members ofrzg being tt-reducible to members of
/}esp. of P:X ‘} end mhembers of 213' tt-reducible to members

of %;5

{Ef. Demuth [3988@1). The strongly 0501ﬁzjing c-function
the proo
F constructe n Themrem 18 of the named paper can be used in the

proof of all parts of this statement.
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