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Acting under uncertainty

Agents may need to handle uncertainty due to:
– partial observability (agent may not know for certain the state, where 

it is)
– nondeterminism (agent may not know where it will end up after 

performing its action)
Logical agent can:

– work with belief states (belief state = a set of possible world states, 
where it might be in)

– generate contingency plans (contingency plan handles every possible 
eventuality).

But, belief-state representations and contingency plans can be 
impossible large and complex as they need to cover every 
possible explanation of observation and every eventuality.
A logical agent believes each sentence to be true or false or has 
no opinion.

A probabilistic agent may have a numerical degree of belief 
between 0 (certainly false) and 1 (certainly true).

Introduction to Artificial Intelligence, Roman Barták 2



Introduction to Artificial Intelligence, Roman Barták

Wumpus world: where to go?

We have a maze with pits that are detected in neighboring 
squares via breeze (Wumpus and gold will not be assumed now).

Where does the agent should go, 
if there is breeze at (1,2) and 
(2,1)?

Each cell – (1,3), (2,2), (3,1) –
might contain a pit. Pure logical 
inference can conclude nothing 
about which square is most likely 
to be safe!

=> a logical agent might have to 
choose randomly

Can we do better?
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Basic probability notation

Like logical assertions, probabilistic assertions are about possible worlds – sample space W.
– the possible worlds are mutually exclusive and exhaustive

Each possible world w is associated with a numerical probability P(w) such that:
0 £ P(w) £ 1, SwÎW P(w) = 1
Example: If we are about to roll two (distinguishable) dice, there are 36 possible worlds to consider: (1,1), (1,2),…, 
(6,6), P(w) =1/36

The sets of possible worlds are called events.
The probability of event is the sum of probabilities of possible worlds in the event.
P(f) = SwÎf P(w)
These probabilities are called unconditional or prior probabilities („priors“ for short).
Example: P(doubles) = 1/36+1/36+1/36+1/36+1/36+1/36 = 1/6

Frequently, we have some information, called evidence (b), and we are interested in probability 
of some event (a).

P(a | b) = P(a Ù b) / P(b), whenever P(b) > 0
This is called conditional or posterior probability
Example: What is the probability of double if we already know that first die rolled to 5?

P(doubles | Die1 = 5) = 1/36 / (6*1/36) = 1/6

This can be also written in a different form called the product rule:
P(a Ù b) = P(a | b) . P(b)
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Representation of probabilities

We can refer to a possible world using a factored representation –
a possible world is represented by a set of variable/value pairs.

Variables in probability theory are called random variables. Every 
random variable has a domain – the set of possible values it can 
take on (similarly to a CSP).

Die1 – represents a value on the first die 1 (1,…,6)
Cavity – describes whether the patient has or has not cavity (true, false)

A possible world is fully identified by values of all random variables.
P(Die1 = 5, Die2 = 5)

Probability of all possible worlds can be described using a 
table called a full joint probability distribution
– elements are indexed by values
of random variables.
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Probabilistic inference
To compute posterior probability of a query proposition given observed evidence, 
we add up probabilities of possible worlds in which the proposition is true 
(marginalization or summing out).

P(f) = Sw:w|=f P(w), P(Y) = SzÎZ P(Y,z)
A variant of this rule involves conditional probabilities (conditioning):

P(Y) = SzÎZ P(Y|z)P(z)

In most cases, we are interested in computing conditional probabilities of some 
variables, given evidence about others:

P(Y | E=e) = P(Y, E=e) / P(E=e) 
We also know SyÎY P(Y=y | E=e) = 1, so we do not need to calculate P(E=e) at all and 
we can do normalization instead: 

P(Y | E=e) = a P(Y, E=e)
where a = 1/ P(E=e) = 1/ SyÎY P(Y=y, E=e) (normalization constant).

Probabilistic query answering:
In a typical case, we know values e of random variables E from the observation
and we are looking for probability distribution of random variables Y from the 
query. The other random variables are hidden H = X – Y – E.

P(Y | E=e) = a P(Y, E=e) = a Sh P(Y,E=e,H=h)
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Probabilistic inference: example

P(toothache) (= P(Toothache=true))
= 0.108 + 0.012 + 0.016 + 0.064 = 0.2

P(cavity Ú toothache)
= 0.108+0.012+0.072+0.008+0.016+0.064 = 0.28

P(cavity|toothache)
= P(cavity Ù toothache) / P(toothache)
= (0.108 + 0.012) / (0.108 + 0.012 + 0.016 + 0.064) = 0.6

P(¬cavity|toothache)
= P(¬cavity Ù toothache) / P(toothache)
= (0.016 + 0.064) / (0.108 + 0.012 + 0.016 + 0.064) = 0.4

P(Cavity|toothache) = a P(Cavity,toothache)
= a [P(Cavity,toothache,catch) + P(Cavity,toothache,¬catch)]
= a [ á0.108, 0.016ñ + á0.012, 0.064ñ ]
= a [ á0.12, 0.08ñ ] = [ á0.6, 0.4ñ ]
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Independence

Can we represent full joint probability distribution more 
compactly?
We can exploit (absolute) independence of random variables:

P(X|Y) = P(X) or P(Y|X) = P(Y) or P(X,Y) = P(X).P(Y)

Example: two dice P(Die1 = 5, Die2 = 3) = P(Die1 = 5).P(Die2 = 3) 

More frequently, two variables X and Y are conditionally 
independent given a third variable Z:
P(X|Y,Z) = P(X|Z) or P(Y|X,Z) = P(Y|Z) or
P(X,Y|Z) = P(X|Z) P(Y|Z)

Example:
P(Catch, Toothache | Cavity) = P(Catch | Cavity). P(Toothache | Cavity)

Toothache and Catch are independent given information about cavity.

One big table can be represented using several smaller tables.
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Wumpus world: probabilistic model

Random Boolean variables:
Pi,j – pit at square (i,j)
Bi,j – breeze at square (i,j)
(only for the observed squares B1,1, B1,2 a B2,1).

Query to be answered:
P(P1,3 | known, b). 

where we have evidence:
b = ¬b1,1 Ù b1,2 Ù b2,1
known = ¬p1,1 Ù ¬p1,2 Ù ¬p2,1

Answer can be computed by enumeration of the full joint 
probability distribution:

P(P1,3 | known, b) = a Sunknown P(P1,3, unknown, known, b)
where unknown be the variables Pi,j except P1,3 and known.
However there are 212 = 4096 terms! Can we do it better (faster)?
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Wumpus world: reasoning

a´ = a. P(known)
Sother P(other) = 1

10

unknown = fringe È other
from conditional independence we get:
P(b | P1,3, known, unknown) = P(b | P1,3, known, fringe)

P(P1,3 | known, b)

= a Sunknown P(P1,3, known, unknown, b)

= a Sunknown P(b | P1,3, known, unknown) * P(P1,3, known, unknown)

= a SfringeSother P(b | P1,3, known, fringe,other) * P(P1,3, known, fringe,other)

= a SfringeSother P(b | P1,3, known, fringe) * P(P1,3, known, fringe,other)

= a Sfringe P(b | P1,3,known, fringe) * Sother P(P1,3, known,fringe,other)

= a Sfringe P(b | P1,3,known, fringe) * Sother P(P1,3)P(known)P(fringe)P(other)

= a P(known)P(P1,3) Sfringe P(b | P1,3,known, fringe) P(fringe) Sother P(other)

= a´ P(P1,3) Sfringe P(b | P1,3,known, fringe) P(fringe)

product rule P(X,Y) = P(X|Y) P(Y)
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Wumpus world: this way

P(P1,3 | known, b) = a´ P(P1,3) Sfringe P(b | P1,3,known, fringe) P(fringe)
Let us explore possible models (values) of fringe that are 

compatible with observation b.

P(P1,3 | known, b) 
= a´ á0.2 (0.04 + 0.16 + 0.16), 0.8 (0.04 + 0.16) ñ
= á 0.31, 0.69 ñ

P(P2,2 | known, b) = á 0.86, 0.14 ñ

Definitely avoid square (2,2)!
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Let probability of pit be 0.2
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Bayes' rule

Recall the product rule
P(aÙb) = P(a|b) P(b) = P(b|a) P(a)

We can deduce a so called Bayes‘ rule (law or theorem):
P(a|b) = P(b|a) P(a) / P(b)

in general:
P(Y|X) = P(X|Y) P(Y) / P(X) = a P(X|Y) P(Y) 

It looks like two steps backward as now we need to know P(X|Y), P(Y), 
P(X).
But these are the values that we frequently have.

P(cause|effect) = P(effect|cause) P(cause) / P(effect) 
– P(effect|cause) describes the causal direction
– P(cause|effect) describes the diagnostic direction

If all the effects are conditionally independent given the cause 
variable, we get:

P(Cause,Effect1,…,Effectn) = P(Cause) Pi P(Effecti|Cause)
Such a probability distribution is called a naive Bayes model

(it is often used even in cases where the “effect” variables are not actually 
conditionally independent given the value of the cause variable).
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Using Bayes' rule

Medical diagnosis
– from past cases we know P(symptoms|disease), P(disease), 

P(symptoms)
– for a new patient we know symptoms and looking for diagnosis 

P(disease|symptoms)
Example:

– meningitis causes a stiff neck 70% of the time
– the prior probability of meningitis is 1/50 000
– the prior probability of stiff neck is 1%
What is the probability that a patient having a stiff neck has 

meningitis?
P(m|s) = P(s|m).P(m) / P(s) = 0.7 * 1/50000 / 0.01 = 0.0014

Why the conditional probability for the diagnostic direction  is not 
stored directly?
• diagnostic knowledge is often more fragile than causal knowledge
• for example, if there is a sudden epidemic of meningitis, the 

unconditional probability of meningitis P(m) will go up so P(m|s)  should 
also go up while the causal relation P(s|m) is unaffected by the 
epidemic, as it reflects how meningitis works
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Bayesian network

How to represent efficiently any full joint probability distribution by exploiting 
conditional independence?
Bayesian network specifies conditional independence relationships among 
random variables using a directed acyclic graph (DAG)

– nodes correspond to random variables
– predecessors of nodes are called parents
– each node X has a conditional probability distribution P(X | Parents(X))

The Bayesian network represents the full joint probability distribution.

P(x1,…,xn) = Pi P(xi | parents(Xi))

Burglar alarm is fairly reliable at 
detecting a burglary, but occasionally 
responds to minor earthquakes.

John nearly always calls when he 
hears alarm, but sometimes confuses 
the telephone ringing with the alarm.

Mary likes loud music and 
often misses the alarm 
altogether.

• neighbors do not perceive burglary directly 
and they do not notice minor earthquakes

• neighbors do not confer (they are 
independent)
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Constructing Bayesian networks

Nodes:
determine the set of random variables that are required to 
model the domain and order them

– any order will work, but the resulting networks will be different
– a recommended order is such that causes precede effects (leads 

to smaller networks and easier-to-fill CPTs)

Arcs:
choose variables Xi in a given order from 1 to n

– in the set  {X1,…,Xi-1} choose a minimal set of parents for Xi, such 
that P(Xi | Parents(Xi)) = P(Xi | Xi-1,…,X1) holds

– for each parent insert a link from the parent to Xi
– write down the conditional probability table

P(Xi | Parents(Xi))

Why does it work?
P(x1,…,xn) = Pi P(xi | xi-1,…,x1) (chain rule)
P(Xi | Xi-1,…,X1) = P(Xi | Parents(Xi))

where Parents(Xi) Í {Xi-1,…,X1}
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Constructing Bayesian networks: example

Let us use the following order of random variables:
MarryCalls, JohnCalls, Alarm, Burglary, Earthquake

– MarryCalls has no parents
– if Marry calls then the alarm is probably

active which would make it more likely
that John calls

– alarm is probably active if Marry
or John calls

– if we know the alarm state then the
calls from Marry and John do not
influence whether the burglary happened

P(Burglary | Alarm, JohnCalls, MarryCalls) = P(Burglary | Alarm)

– the alarm is an earthquake detector of sorts, but if there 
was a burglary then it explains the alarm and the 
probability of an earthquake is only slightly above normal
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Inference by enumeration

We introduced Bayesian networks to do inference – to deduce posterior 
probability of some variable(s) X from the query given the values e of observed 
variables (evidence), while having the other variables Y hidden.

P(X|e) = a P(X,e) = a Sy P(X,e,y) 
where P(X,e,y) is computed as follows

P(x1,…,xn) = Pi P(xi | parents(Xi))

Example: 
Assume a query about the probability of
burglary when both Marry and John calls

P(b | j,m)
= a Se Sa P(b) P(e) P(a|b,e) P(j|a) P(m|a)
= a P(b) Se P(e) Sa P(a|b,e) P(j|a) P(m|a)

The structure of computation can be described
using a tree structure.
– it is very similar to solving CSPs and SAT

Notice that some parts are repeated!
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Inference by variable elimination

Enumeration repeats the same parts of the computation.
We can remember the result and reuse it later (dynamic programming).

P(B | j,m)
= a P(B) Se P(e) Sa P(a|B,e)P(j|a)P(m|a)
= a f1(B) Se f2(E) Sa f3(A,B,E) f4(A) f5(A)

Factors fi are matrices (tables) corresponding to CPTs.
Evaluation will be done from right to left.

– the product of factors corresponds to the pointwise product (it is not a 
multiplication of matrices)

– summing out a variable is done by adding up the sub-matrices formed by fixing 
the variable to each of its values in turn

Notes:
• The algorithm works for any

ordering of variables.
• The complexity is given by the size

of the largest factor constructed
during the operation of the algorithm.

• Eliminate whichever variable
minimizes the size of the next factor
to be constructed (heuristic).
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Operations on factors

The pointwise product of two factors yields a new factor whose 
variables are the union of the variables from the original factors.
f(X1,…,Xj,Y1,…,Yk,Z1,…Zl) = f(X1,…,Xj,Y1,…,Yk) . f(Y1,…,Yk,Z1,…Zl) 

Then we sum out a variable to eliminate it:  Sa f(A,B,C) = f(B,C) 

A B C f3(A,B,C)

T T T 0.06 = 0.3*0.2
T T F 0.24 = 0.3*0.8
T F T 0.42 = 0.7*0.6
T F F 0.28 = 0.7*0.4
F T T 0.18 = 0.9*0.2
F T F 0.72 = 0.9*0.8
F F T 0.06 = 0.1*0.6
F F F 0.04 = 0.1*0.4

+ =

A B C f3(A=T,B,C)

T T T 0.06
T T F 0.24
T F T 0.42
T F F 0.28

A B C f3(A=F,B,C)

F T T 0.18
F T F 0.72
F F T 0.06
F F F 0.04

B C f4(B,C)

T T 0.24
T F 0.96
F T 0.48
F F 0.31

A B f1(A,B)

T T 0.3
T F 0.7
F T 0.9
F F 0.1

B C f2(B,C)

T T 0.2
T F 0.8
F T 0.6
F F 0.4

* =
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Approximate inference

Exact inference is intractable for large, multiply connected 
networks so we may need to consider approximate inference 
methods based on Monte Carlo algorithms.

Monte Carlo algorithms are used to estimate quantities that are 
difficult to calculate exactly.

• generate many samples
• use statistics to estimate the quantity
• more samples = more accuracy

A sample corresponds to an instantiation of random variables.
Each sample should be generated from a known probability 
distribution (given by CPTs in the Bayesian network).

– nodes (variables) are taken in topological order
– the probability distribution is conditioned on the values already 

assigned to parents
– generate a sample value

based on this distribution
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From samples to probability

Let N be the number of samples and N(x1,…,xn) be the number of occurrences of event 
x1,…,xn, then

P(x1,…,xn) = limN®¥ (N(x1,…,xn)/N)
However, we are looking for P(X | e)!

Rejection sampling
From all the generated samples, we will select
only those consistent with the evidence e
(other samples are rejected).

P(X | e) » N(X,e) / N(e)
Major weakness: rejecting too many samples

Likelihood weighting
Instead of rejecting inconsistent samples,
it seems more efficient to generate only
samples consistent with evidence e.

– Fix the values for the evidence variables E
and sample only the non-evidence variables.

– The probability of obtaining a sample is
P(z,e) = Pi P(zi | parents(zi))

– But this is not what we want! We miss
w(z,e) = Pj P(ej | parents(ej)).

– Hence each sample is weighted as follows:
P(X | e) » a N(X,e) w(X,e)

Major weakness: too small weights
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Summary

Probability theory is a formal tool to handle uncertainty.
The full joint probability distribution specifies the 
probability of each complete assignment of values to 
random variables (possible worlds).
It is usually too large but independence relations between 
subsets of random variables allows us to factor it into 
smaller joint or conditional distributions.
Bayesian network is such a compact representation.
We can use it to answer queries P(X|E) about probability 
distributions of variables X under evidence E.
– exact methods (enumeration, variable elimination)
– approximate methods (rejection sampling, likelihood 

weighting)
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