

Planning & Scheduling

Roman Barták

Department of Theoretical Computer Science and Mathematical Logic

Temporal and Resource Planning

Temporal planning

Temporal planning involves reasoning on time.

Actions do not describe state transitions only but they specify how the state variables evolve in time and what are the prevailing conditions:

- actions have duration
 - going from A to B takes some time
- preconditions must hold at specific time of action execution
 - place B must be free right before arrival
- similarly action effects happen at specific times of the action
 - place A is made empty right after leaving it
- actions can interfere to achieve a joint effect
 - to open doors we need to press the handle and push (or pull) the doors
- goals and known intermediate states can be spread in time
 - a dock is closed for a given time interval due to maintenance so vessels cannot use it
 - customer A will be served before the customer B

Planning with temporal operators

 Action specification contains information when the preconditions must hold, when the effects become active and there are temporal relations between the time points and intervals.

Planning with chronicles

- Actions describe partially defined functions how the state variables are being changed in time.

Planning graph and time

 Actions are split into three parts – start, middle, and end – and state layers have duration.

- Multi-valued state variables describe some properties depending on world states.
 - rloc: robots \times S \rightarrow locations
- Now state variables will depend on exact time:
 - rloc: robots × time → locations

Example:

- At time t_1 robot r1 entered place loc1, where it stayed till time t_2 and then left.
- $\;$ At time $t_{3},\,t_{2}\!\!<\!\!t_{3},\, robot\,r1$ arrived to place loc2, where it stayed till time t_{4} and then left.
- At time t_5 , $t_4 < t_5$, robot r1 arrived to some not-yet specified place l.

- The evolution of a state variable can be specified partially with "holes" where the value is unknown.
 - During planning, this evolution will be concretised.
- We will restrict to piecewise constant functions that can be described using two types of temporal assertions:
 - event x@t: (v_1,v_2) specifies the instantaneous change of the value of x from v_1 to v_2 ($v_1 \neq v_2$) at time t
 - $x@t:(v_1,v_2) = (\exists t_0 \ \forall t' \ (t_0 < t' < t) \ x(t') = v_1) \land \ x(t) = v_2$
 - **persistence condition x@[t₁,t₂):u** specifies that the value of x persists as being equal to u over the interval $[t_1,t_2)$
 - $x@[t_1,t_2):u = \forall t (t_1 \le t < t_2) x(t) = u$

There is the following relation between events and persistence conditions:

$$x@t:(v_1,v_2) = v_1 \neq v_2 \land \exists t_1, t_2 (t_1 < t < t_2) x@[t_1,t]:v_1 \land x@[t,t_2]:v_2$$

Chronicle

- A chronicle for a set of state variables is a pair Φ=(F,C), where:
 - F is a set of temporal assertions over the state variables (i.e. events and persistence conditions)
 - C is a set of constraints of two types:
 - **object constraints**, i.e., constraints connecting object variables in the form of x∈D, x=y, x≠y and rigid relations
 - temporal constraints, i.e., constraints over the temporal variables using the point algebra (<,=,>)
- **Timeline** is a chronicle for a single state variable.

({ rloc(r1)@t₁: (l₁,loc1), rloc(r1)@[t₁,t₂): loc1, rloc(r1)@t₂: (loc1,l₂), rloc(r1)@t₃: (l₃,loc2), rloc(r1)@[t₃,t₄): loc2, rloc(r1)@t₄: (loc2,l₄), rloc(r1)@t₅: (l₅,l) } { adjacent(l₁,loc1), adjacent(loc1,l₂), adjacent(loc2,l₄), adjacent(loc2,l₄), adjacent(l₅,l), t₁<t₂<t₃<t₄<t₅ })

- To ensure that the **timeline can specify a valid evolution** of a state variable, there must **not be any two conflicting temporal assertions** temporal assertions that allow different values of the state variable at the same time.
- Temporal conflicts can be avoided by requiring a timeline to contain, either explicitly or implicitly, separation constraints that make each pair of assertions non-conflicting.
- The **separation constraint** for a pair assertions is defined as follows:
 - for $x@[t_1,t_2]:v_1$ a $x@[t_3,t_4]:v_2$ there are three possible separation constraints:
 - $t_2 \le t_3$, $t_4 \le t_1$, $v_1 = v_2$
 - for x@t: (v_1, v_2) a x@ $[t_1, t_2)$:v there are four possible separation constraints:
 - $t < t_1, t_2 < t, (t_1 = t \land v = v_2), (t_2 = t \land v = v_1)$
 - for x@t: (v_1, v_2) a x@t': (v_1', v_2') there are two possible separation constraints:
 - t≠t', (v₁=v₁' ∧ v₂=v₂')

Note:

Assertions can also be separated by constraints on difference of the object variables in the assertions (or example assertions for state variables rloc(r) and rloc(r') can be separated by a constraint $r \neq r'$).

Consistency

- **Timeline** Φ =(F,C) for the state variable x is **consistent** iff C is consistent (there is a solution) and for each pair of temporal assertions from F there is a separation constraint entailed by C.
 - the separation constraint can be a part of C
 - or it can be entailed by C (to be true in any solution of C)
- A chronicle is consistent iff all its timelines are consistent.

Note:

 Consistency requires the separation constraints to be entailed by C; it is not enough if the separation constraints can be added to C without a conflict.

- A consistent **chronicle** Φ =(F,C) **supports an assertion** α (α being either **x@t:(v,v')** or **x@[t,t'):v**) iff there is in F an assertion β that asserts a value w for α (β is either **x@\tau:(w',w)** or **x@[\tau',\tau):w**) and there exists a set of separation constraints c such that $\Phi \cup (\{\alpha, x@[\tau,t):v\}, \{w=v,\tau<t\}\cup c$) is a consistent chronicle.
 - $\ \Phi \cup \Phi' = (F \cup F', C \cup C'), \ \Phi \subseteq \Phi' = (F \subseteq F' \land C \subseteq C'),$
 - β is called a **support** for α in α
 - the pair δ = ({ α , x@[τ ,t):v}, {w=v, τ <t} \cup c) is called an **enabler** for α in Φ

Notes:

- The chronicle must be consistent before enabling α .
- The enabler is a chronicle.
- The support for α is looked only for value v, that is before the time t. This is because the support will be used as a causal explanation for α .
- There can be several ways to enable an assertion α in Φ .

Support for chronicle

A consistent **chronicle** Φ =(F,C) **supports a set of assertions** ϵ iff each assertion $\alpha_i \in \epsilon$ is supported by (FU ϵ -{ α_i }, C) with an enabler δ_i such that $\Phi \cup \phi$ is a consistent chronicle, where $\phi = \bigcup_i \delta_i$.

Notes:

- The definition allows an assertion $\alpha_i \in \epsilon$ to support another assertion $\alpha_j \in \epsilon$ with respect to Φ as long as the union of the enablers is consistent with Φ . This allows synchronisation of several actions with **interfering effects**.
- ϕ is called an **enabler** for ϵ (again, the enabler is not unique)
- Let $\Phi'=(F',C')$ be a chronicle such that Φ supports F' and let $\theta(\Phi'/\Phi) = \{\phi \cup (\emptyset,C') \mid \phi \text{ is enabler for } F'\}$ be a set of all possible enablers. Then a consistent **chronicle** $\Phi=(F,C)$ **supports chronicle** $\Phi'=(F',C')$, iff Φ supports F' and there is an enabler $\phi \in \Theta(\Phi'/\Phi)$ such that $\Phi \cup \phi$ is consistent chronicle.
- Φ entails Φ' iff Φ supports Φ' and there is an enabler $\phi \in \Theta(\Phi'/\Phi)$ such that $\phi \subseteq \Phi$.

A chronicle planning operator is a pair o = (name(o), (F(o),C(o))):

- name(o) is a syntactic expression of the form o(t_s,t_e,t₁,...,v₁,v₂,...) containing all temporal and object variables in the operator (o is an operator symbol)
- (F(o),C(o)) is a chronicle

Example (simplified):

```
\begin{aligned} & \mathsf{move}(\mathsf{t}_{s}, \mathsf{t}_{e}, \mathsf{t}_{1}, \mathsf{t}_{2}, \mathsf{r}, \mathsf{l}, \mathsf{l}') = \\ & \{ \mathsf{rloc}(\mathsf{r}) @ \mathsf{t}_{s} : (\mathsf{l}, \mathsf{routes}), \\ & \mathsf{rloc}(\mathsf{r}) @ [\mathsf{t}_{s}, \mathsf{t}_{e}) : \mathsf{routes}, \\ & \mathsf{rloc}(\mathsf{r}) @ \mathsf{t}_{e} : (\mathsf{routes}, \mathsf{l}'), \\ & \mathsf{contains}(\mathsf{l}) @ \mathsf{t}_{1} : (\mathsf{r}, \mathsf{empty}), \\ & \mathsf{contains}(\mathsf{l}') @ \mathsf{t}_{2} : (\mathsf{empty}, \mathsf{r}), \\ & \mathsf{t}_{s} < \mathsf{t}_{1} < \mathsf{t}_{2} < \mathsf{t}_{e}, \\ & \mathsf{adjacent}(\mathsf{l}, \mathsf{l}') \ \} \end{aligned}
```


The differences from classical planning operators are

- no distinction between preconditions and effects
- an operator is applied not to a state but to a chronicle
- the result of **applying** an instance of operator to a chronicle is **not unique**

Action application

- An action is a partially instantiated operator.
- Action a=(F(a),C(a)) is applicable to a chronicle Φ iff Φ supports the chronicle (F(a),C(a)).

The result of applying a to Φ is not unique but a set of chronicles $\gamma(\Phi,a) = \{\Phi \cup \phi \mid \phi \in \theta(a/\Phi)\}.$

• A set of actions $\pi = \{a_1, ..., a_n\}$ is applicable to Φ iff Φ supports $\Phi_{\pi} = \bigcup_i (F(a_i), C(a_i))$.

The result of applying π to Φ is the set of chronicles $\gamma(\Phi,\pi) = \{\Phi \cup \phi \mid \phi \in \Theta(\Phi_{\pi}/\Phi)\}.$

- A temporal planning problem is a triple P=(O, Φ_0 , Φ_g), where
 - O is a set of chronicle planning operators
 - Φ_0 is a consistent chronicle that represents an initial scenario describing the rigid relations, the initial state, and the expected evolution that will take place independently of the actions to be planned
 - $\Phi_{\mbox{\scriptsize g}}$ is a consistent chronicle that represents the goals
- A **solution plan** for a problem P is a set of actions $\pi=\{a_1,...,a_n\}$, each being an instance of operator in O, such that that there is a chronicle in $\gamma(\Phi_0,\pi)$ that entails Φ_g .

Planning with chronicles

- The planning procedure is derived from plan-space planning.
- For a planning problem $P=(O,\Phi_0,\Phi_g)$ we start with the chronicle $\Phi=(F_0,C_0\cup C_g)$, a set of open goals $G=F_g$, an empty plan $\pi=\varnothing$, and an empty set of threats $K=\varnothing$.

```
CP(\Phi, G, \mathcal{K}, \pi)
     if G = \mathcal{K} = \emptyset then return(\pi)
     perform the two following steps in any order
           if G \neq \emptyset then do
                 select any \alpha \in G
                 if \theta(\alpha/\Phi) \neq \emptyset then return(CP(\Phi, G - \{\alpha\}, \mathcal{K} \cup \{\theta(\alpha/\Phi)\}, \pi))
                      relevant \leftarrow \{a \mid a \text{ contains a support for } \alpha\}
                      if relevant = \emptyset then return(failure)
                      nondeterministically choose a \in relevant
                      \mathsf{return}(\mathsf{CP}(\Phi \cup (\mathcal{F}(a), \mathcal{C}(a)), G \cup \mathcal{F}(a), \mathcal{K} \cup \{\theta(a/\Phi)\}, \pi \cup \{a\}))
           if \mathcal{K} \neq \emptyset then do
                 select any C \in \mathcal{K}
                 threat-resolvers \leftarrow \{\phi \in C \mid \phi \text{ consistent with } \Phi\} \blacktriangleleft
                if threat-resolvers = \emptyset then return(failure)
                 nondeterministically choose \phi \in threat-resolvers
                 return(CP(\Phi \cup \phi, G, \mathcal{K} - C, \pi))
end
```

Open goal

- is either supported by Φ, then its enablers are added to K
- otherwise, a resolver is an action that supports the goal and this action is added to the system

Threats is a pending set of enablers.

- From each set of enablers we need to select one that is consistent with Φ and its added to Φ .

- Now we know how to use time in planning
 - planning with chronicles
- We already have some resources in planning
 - for example a hand or a crane
- A **state variable** with two values occupied/empty is not an efficient model to describe several identical resources it does not matter which hand is used to pick up the block (the hands are symmetrical).
- We can model a set of identical unary resources using a single multi-valued state variable describing the number of available resources.
 - the domain for the variable is **numeric** (the number of resources)
 - changes of values are **relative** (the resources are taken and returned)

Capacity variable

- A state variable describes how some property of the object changes in time.
 - the changes are absolute (location changed from loc1 to loc2)
- Similarly we can describe the capacity profile of the resource, i.e., how the available capacity changes with time, using a **capacity variable**.
 - resources × time → {0,1,...,Q},
 where Q is a maximal capacity
 - the domain is numeric
 - the changes of values are relative (available capacity is increased or decreased by some amount)

Note:

we assume instant changes

Temporal assertions and capacity variables

- We can describe changes of capacity variables using temporal assertions for resources.
 - decrease of capacity z@t:-q
 - increase of capacity z@t:+q
 - borrowing of capacity z@[t,t'):q

Notes:

- this is a description of **relative** changes
- $-z@[t,t'):q = z@t:-q \wedge z@t':+q$
- $-z@t:-q = z@[t,\infty):q$
- $-z@t:+q = z@0:+q \wedge z@[0,t):q$
 - at the beginning we increase the capacity from Q to Q+q and we borrow the increased capacity till time t
- it is necessary to specify the maximal capacity for each capacity variable in the problem description

Operators and resources

- Planning operator is a chronicle with temporal assertions and constraints.
- To work with resources we need to **add** to a chronicle just the **temporal assertions for resources**.

- We will only assume actions that borrow resource capacity so the assertions have the form z@[t,t'):q.
- We need to extend the notion of consistency to cover assertions for resources, i.e., to assume capacity limits.
- A set of temporal assertions R_z for resource z is conflicting iff there is a subset {z@[t_i,t_i'):q_i | i∈I}⊆ R_z such that:
 - assertions from this subset overlap in time, i.e., it is possible to assign times t_i such that $\bigcap_{i \in I} [t_i, t_i') \neq \emptyset$
 - $-\Sigma_{i\in I} q_i > Q$

Notes:

- Resource conflict means a possible exceeding of resource capacity.
- The resource conflict can only appear between the assertions for the same resource variable.
- A chronicle is consistent iff all temporal assertions over all state variables are consistent and there is no conflicting set of assertions for capacity variables.

Critical set

How to discover resource conflicts?

Claim:

Intervals from a set I can overlap iff any pair of intervals from I can overlap.

$$(\cap_{i\in I} [t_i,t_i') \neq \varnothing \Leftrightarrow \forall i,j\in I: [t_i,t_i')\cap [t_j,t_j') \neq \varnothing)$$

The set of intervals/assertions can be represented using a graph:

- nodes describe intervals/assertions
- edges connect nodes with overlapping intervals

• We will look for a clique U in the graph such that $\Sigma_{i \in U} q_i > Q$. More precisely, we will look for smallest (inclusion) cliques with this property – **minimal critical sets** (MCS)

How to find all minimal critical sets?

- index all nodes (in any order)
- for each node, explore in the DFS style all cliques containing this node and the nodes with smaller indexes
- all cliques exceeding the resource capacity are remembered (and not further extended)

```
\begin{array}{l} \mathsf{MCS-expand}(p) \\ \mathsf{for} \ \mathsf{each} \ v_i \in \mathsf{pending}(p) \ \mathsf{do} \\ \mathsf{od} \\ \mathsf{od} \\ \mathsf{od} \\ \mathsf{one} \\ \mathsf{one} \\ \mathsf{od} \\ \mathsf{od} \\ \mathsf{one} \\ \mathsf{one} \\ \mathsf{od} \\ \mathsf{od} \\ \mathsf{one} \\ \mathsf{one} \\ \mathsf{od} \\ \mathsf{od} \\ \mathsf{od} \\ \mathsf{
```

- The algorithm starts with a clique found so far (at the beginning it is empty) and a set of pending candidates to be included in the clique (at the beginning it is empty).
- We look for possible extensions of the clique by a node v_i (and then nodes with index smaller than i).

How to remove a resource conflict?

- Let U= {z@[t_i,t_i'):q_i | i∈I} be a minimal critical set then any temporal constraint t_i'< t_i for i,j∈I removes the resource conflict.
 - this constraint removes edge (i,j) from the graph so U is no more a clique
 - any larger clique U': U⊆U' is no more a clique
 - no smaller clique U': U'⊆U was conflicting
- Some of suggested temporal constraints can be in temporal conflict with other constraints.
 - Example: $t_4' < t_7$ is in conflict with $t_7' < t_4'$ and $t_7 < t_7'$
 - Such resolvers are not used!
- Some suggested constraints are too strong (force removal of other edges from the graph).
 - Example: $t_4' < t_3$ is too strong as it forces $t_7' < t_3$ (via $t_7' < t_4'$)
 - The planning algorithm will select one resolver to repair MCS so it is better to use only the necessary resolvers so they do not force other resolvers.

Planning with resources

```
\mathsf{CPR}(\Phi, G, \mathcal{K}, \mathcal{M}, \pi)
     if G = \mathcal{K} = \mathcal{M} = \emptyset then return(\pi)
     perform the three following steps in any order
           if G \neq \emptyset then do
                select any \alpha \in G
                if \theta(\alpha/\Phi) \neq \emptyset then return(CPR(\Phi, G - \{\alpha\}, \mathcal{K} \cup \theta(\alpha/\Phi), \mathcal{M}, \pi))
                else do
                     relevant \leftarrow \{a \mid a \text{ applicable to } \Phi \text{ and has a provider for } \alpha\}
                     if relevant = \emptyset then return(failure)
                     nondeterministically choose a \in relevant
                     \mathcal{M}' \leftarrow \text{the update of } \mathcal{M} \text{ with respect to } \Phi \cup (\mathcal{F}(a), \mathcal{C}(a))
                     \mathsf{return}(\mathsf{CPR}(\Phi \cup (\mathcal{F}(a), \mathcal{C}(a)), G \cup \mathcal{F}(a), \mathcal{K} \cup \{\theta(a/\Phi)\}, \mathcal{M}', \pi \cup \{a\})))
          if \mathcal{K} \neq \emptyset then do
                select any C \in \mathcal{K}
                threat\text{-}resolvers \leftarrow \{\phi \in C \mid \phi \text{ consistent with } \Phi\}
                if threat-resolvers = \emptyset then return(failure)
                nondeterministically choose \phi \in threat\text{-}resolvers
                \mathsf{return}(\mathsf{CPR}(\Phi \cup \phi, G, \mathcal{K} - C, \mathcal{M}, \pi))
          if \mathcal{M} \neq \emptyset then do
                select U \in \mathcal{M}
                resource\text{-}resolvers \leftarrow \{\phi \text{ resolver of } U \mid \phi \text{ is consistent with } \Phi\}
                if resource-resolvers = \emptyset then return(failure)
                nondeterministically choose \phi \in resource-resolvers
                \mathcal{M}' \leftarrow the update of \mathcal{M} with respect to \Phi \cup \phi
                \mathsf{return}(\mathsf{CPR}(\Phi \cup \phi, G, \mathcal{K}, \mathcal{M}', \pi))
end
```

We just extent the algorithm for planning with chronicles to work with minimal conflict sets (in M) to resolve resource conflicts

© **2014 Roman Barták**Department of Theoretical Computer Science and Mathematical Logic bartak@ktiml.mff.cuni.cz