Planning & Scheduling

Roman Bartak

Department of Theoretical Computer Science and Mathematical Logic

Temporal and Resource Planning

Temporal planning involves reasoning on time.

Actions do not describe state transitions only but they specify how
the state variables evolve in time and what are the prevailing
conditions:

— actions have duration
* going from A to B takes some time
— preconditions must hold at specific time of action execution
* place B must be free right before arrival
similarly action effects happen at specific times of the action
* place A is made empty right after leaving it
— actions can interfere to achieve a joint effect
* to open doors we need to press the handle and push (or pull) the doors
— goals and known intermediate states can be spread in time

* adockis closed for a given time interval due to maintenance so vessels cannot
use it

¢ customer A will be served before the customer B

Planning with temporal operators

— Action specification contains information when the
preconditions must hold, when the effects become active
and there are temporal relations between the time points
and intervals.

Planning with chronicles @

— Actions describe partially defined functions how the state
variables are being changed in time.

Planning graph and time

— Actions are split into three parts — start, middle, and end —
and state layers have duration.

Multi-valued state variables describe some properties
depending on world states.
— rloc: robots x S — locations

Now state variables will depend on exact time:
— rloc: robots x time — locations

Example:

— At time t, robot rl entered place locl, where it stayed till time t, and
then left.

— Attime t;, t,<t;, robot rl arrived to place loc2, where it stayed till time
t, and then left.

— Attime t,, t,<t;, robot rl arrived to some not-yet specified place I.

* The evolution of a state variable can be specified partially
with "holes” where the value is unknown.
— During planning, this evolution will be concretised.

* We will restrict to piecewise constant functions that can be
described using two types of temporal assertions:
— event x@t:(v,,v,) specifies the instantaneous change of the value of x
fromv, tov, (v;=v,) at time t
o Xx@t:(vy,v,) = (Aty V' (to< t'<t) x(t')=v,) A x(t)=v,
— persistence condition x@[t,,t,):u specifies that the value of x persists
as being equal to u over the interval [t,,t,)
¢ X@[t,,t,):u =Vt (t;st<t,) x(t)=u
There is the following relation between events and persistence
conditions:
X@t:(vy,v,) = vi=v, At t, (t,<t<t,) x@[t,,t):v; A Xx@[t,L,):v,

* A chronicle for a set of state variables is a pair
d=(F,C), where:
— Fis a set of temporal assertions over the state variables
(i.e. events and persistence conditions)

— Cis a set of constraints of two types:

* object constraints, i.e., constraints connecting object variables in
the form of x&D, x=y, x=y and rigid relations

* temporal constraints, i.e., constraints

over the temporal variables using

the point algebra (<,=,>) ({ rloc(r1)@t,: (l,,locl),

rloc(r1)@[t,,t,) : locl,
. 1 1)@t,: (loc1,l,),
* Timeline is a chronicle for a single :.32813@&: %.:’,focéi
1 rloc(r1)@[t;,t,) : loc2,
state variable. st
rloc(rl)@ts: (I51) >
{ adjacent(l,,locl),
routes routes adjacent(loci,l,),
adjacent(l;,loc2),

~routes
| Tocl | Y‘OU’CESI / adjacent(loc2,1,),
e routes adjacent(l;, 1),

t, t, ty A t time t <t <t;<t,<t; }) 7

rloc(r)

To ensure that the timeline can specify a valid evolution of a state variable,
there must not be any two conflicting temporal assertions — temporal
assertions that allow different values of the state variable at the same time.

Temporal conflicts can be avoided by requiring a timeline to contain, either
explicitly or implicitly, separation constraints that make each pair of
assertions non-conflicting.

The separation constraint for a pair assertions is defined as follows:
— for x@[t,,t,):v; a x@][t;,t,):v, there are three possible separation constraints:
* t=ty, tysty, vi=v,

— forx@t:(v,,v,) a x@[t,,t,):v there are four possible separation constraints:
o i<t t,<t, (t;=t A v=V,), (t,=t A v=vy)

— forx@t:(v,,v,) a x@t’:(v,’,v,’) there are two possible separation constraints:
o t=t, (vi=vy A vyEYy)

Note:

— Assertions can also be separated by constraints on difference of the object
variables in the assertions (or example assertions for state variables rloc(r) and
rloc(r’) can be separated by a constraint r = r’).

* Timeline ®=(F,C) for the state variable x is consistent
iff Cis consistent (there is a solution) and for each pair
of temporal assertions from F there is a separation
constraint entailed by C.

— the separation constraint can be a part of C
— or it can be entailed by C (to be true in any solution of C)

* A chronicle is consistent iff all its timelines are
consistent.

Note:

— Consistency requires the separation constraints to be
entailed by C; it is not enough if the separation constraints
can be added to C without a conflict.

* A consistent chronicle ®=(F,C) supports an assertion o (o being

either x@t:(v,v’) or x@[t,t’):v) iff there is in F an assertion 3 that
asserts a value w for a (f is either x@t:(w’,w) or x@[v’,t):w) and
there exists a set of separation constraints c such that
O U ({o, x@[t,t):v}, {w=v,T<t}Uc) is a consistent chronicle.

— ®UP’ = (FUF’, CUC’), PCP’ = (FCF’ A CCC),

— Pis called a support for a in a

— the pair 0 = ({a, x@[T,t):v}, {w=v,t<t}Uc) is called
an enabler for ain @

x@[,t):v

Notes: v t v
— The chronicle must be consistent before enabling a.
— The enabler is a chronicle.

— The support for a is looked only for value v, that is before the time t. This is
because the support will be used as a causal explanation for a.

— There can be several ways to enable an assertion a in ®.

A consistent chronicle ®=(F,C) supports a set of assertions ¢ iff each

assertion o,Ee¢ is supported by (FUe-{a.}, C) with an enabler 9, such
that ®U¢ is a consistent chronicle, where ¢ = U, 0.

Notes:

The definition allows an assertion a.Ee to support another
assertion o,€e with respect to @ as Iong as the union of the
enablers is consistent with ®. This allows synchronisation of several
actions with interfering effects.

¢ is called an enabler for € (again, the enabler is not unique)

Let ®’=(F’,C’) be a chronicle such that ® supports F’ and let 6(®’/®) =

{$ U (F,C’) | ¢ is enabler for F’} be a set of all possible enablers.
Then a consistent chronicle ®=(F,C) supports chronicle ®’'=(F,C’),
iff @ supports F’ and there is an enabler ¢&06(dD’/P) such that dPU¢
is consistent chronicle.

® entails @’ iff @ supports @’ and there is an enabler ¢€06(P’/P) such

that ¢C .

A chronicle planning operator is a pair o = (name(o), (F(0),C(0))):
— name(o) is a syntactic expression of the form o(t,,t,,ty,...,vy,V,,...)
containing all temporal and object variables in the operator (o is an
operator symbol)

— (F(0),C(0)) is a chronicle S _routes __[r

'E ! time
Example (simplified): . ,
move(t,,t,,ty,ty,r,Ll1') = ,\\ !

{rloc(r)@t, : (l,routes),
rloc(r)@[t,,t,) : routes,
rIoc(r)@‘ce : (routes,l’), b H
contains(l)@t; : (r,empty), '
contains(l')@t, : (empty,r),
t<t;<t,<t,
adjacent(l,I) } t

contains(/)

contains(/)

The differences from classical planning operators are
— no distinction between preconditions and effects
— an operator is applied not to a state but to a chronicle
— the result of applying an instance of operator to a chronicle is not unique

* An action is a partially instantiated operator.

* Action a=(F(a),C(a)) is applicable to a chronicle ® iff
® supports the chronicle (F(a),C(a)).
The result of applying a to @ is not unique but a set
of chronicles y(®,a) = {dPU¢ | ¢&0(a/P)}.

* Aset of actions m={a,,...,a,} is applicable to O iff
supports ®_=U. (F(a,),C(a;)).
The result of applying it to @ is the set of chronicles
Y(@,7) = {PU¢ | ¢E6(P,/D)}.

* Atemporal planning problem is a triple P=(0,®,®,),

where

— O is a set of chronicle planning oper
— @, is a consistent chronicle that rep

ators
resents an initial

scenario describing the rigid relations, the initial state, and
the expected evolution that will take place independently

of the actions to be planned

— @, is a consistent chronicle that represents the goals

* A solution plan for a problem P is

a set of actions

n={a,,...,a,}, each being an instance of operator in O,

such that that there is a chronicle
entails (I)g.

in y(Py,m) that

* The planning procedure is derived from plan-space planning.

* Fora planning problem P=(0,®,,®,) we start with the chronicle
®=(F,,C,UC,), a set of open goals (5=Fg, an empty plan =, and

an empty set of threats K=.

CP(®, G, K,)

Open goal
| -— is either supported by @,

if G = K = @ then return{x))
perform the two following steps in any order then its enablers are added
if G # @ then do to K
selectanyo € G

| —— otherwise, a resolver is an

and this action is added to

if 6(ct/) # B then return(CP(P, G — {a}, K UP(a/ D)} 7)) action that supports the goal
else do

relevant < {a | a contains a support for o}
if relevant = @ then return(failure)
nondeterministically choose a < relevant
return(CP(® U (F(a),C(a)), GU F(a), K U{6(a/D)}, w U{a}))
if IC # @ then do
selectany C e K
threat-resolvers <— {¢ € C | ¢ consistent with @} «——
if threat-resolvers = @ then return(failure)
nondeterministically choose ¢ & threat-resolvers
return(CP(® U ¢, G, K — C, 7))
end

the system

Threats is a pending set of
enablers.

—— From each set of enablers
we need to select one that is
consistent with ® and its
added to .

* Now we know how to use time in planning
— planning with chronicles

* We already have some resources in planning
— for example a hand or a crane

A state variable with two values occupied/empty is
not an efficient model to describe several identical
resources — it does not matter which hand is used to
pick up the block (the hands are symmetrical).

* We can model a set of identical unary resources
using a single multi-valued state variable describing
the number of available resources.

— the domain for the variable is numeric (the number of
resources)

— changes of values are relative (the resources are taken
and returned)

* A state variable describes how some property of the
object changes in time.
— ;che ghanges are absolute (location changed from loc1 to

oc2

* Similarly we can describe the capacity profile of the
resource, i.e., how the available capacity changes
with time, using a capacity variable.
— resources x time —{0,1,...,Q},

where Q is a maximal capacity A Consumable resource
— the domain is numeric e T
— the changes of values are relative] a3
(available capacity is increased 23] x
or decreased by some amount) —_— >t
Note: B L B as. . 49)

we assume instant Changes consume(a), 7, ¢2)

* We can describe changes of capacity variables using
temporal assertions for resources.

z@t:-q

z@t:+q

— borrowing of capacity z@[t,t’):q

— decrease of capacity
— increase of capacity

Notes:
— this is a description of relative changes
z@[t,t'):q = z@t:-g A z@t":+q

z@t:-q = z@[t,*0):q

z@t:+q =z@0:4q A z@[0,t):q
* at the beginning we increase the capacity from Q to Q+q
and we borrow the increased capacity till time t

it is necessary to specify the maximal capacity for each
capacity variable in the problem description

* Planning operator is a chronicle with temporal

assertions and constraints.

e To work with resources we need to add to a chronicle
just the temporal assertions for resources.

move(ts, te, t1,t2,7,1,1") =

routes

I

robot-location(r)

space(l)

space(!’)

{

robot-location(r)@t; : (I, routes),
robot-location(r)@][t, t.) : routes,
robot-location(r)@t, : (routes, I'),
space(l)@ty : +1,

space(l')@Qty : —1,

te <ty <ty <t

adjacent(l,1") }

* We will only assume actions that borrow resource capacity so
the assertions have the form z@[t,t'):q.

* We need to extend the notion of consistency to cover
assertions for resources, i.e., to assume capacity limits.

* Aset of temporal assertions R, for resource z is conflicting iff
there is a subset {z@][t,t):q, | i€I}C R, such that:

— assertions from this subset overlap in time, i.e., it is possible to assign
times t; such that N, [t,t/)=J

— 256> Q

Notes:
— Resource conflict means a possible exceeding of resource capacity.

— The resource conflict can only appear between the assertions for the
same resource variable.

* A chronicle is consistent iff all temporal assertions over all
state variables are consistent and there is no conflicting set of
assertions for capacity variables.

How to discover resource conflicts?

Claim:
Intervals from a set | can overlap iff any pair of intervals from |

can overlap.
(Nig [tt))=D < VijEl [t,t)N[t,t)=D)

The set of intervals/assertions can be represented using a graph:

— nodes describe

intervals/assertions v3:20

v2:60 ———y
—k "

— edges connect nodes 2y - < 50
with overlapping vs:s0 Wy Y
intervals .

v7:40

(a) ()

* We will look for a clique U in the graph such that Z, g, > Q.
More precisely, we will look for smallest (inclusion) cliques with
this property — minimal critical sets (MCS)

How to find all minimal critical sets?

* index all nodes (in any order)

» for each node, explore in the DFS style all cliques containing this node and

the nodes with smaller indexes

* all cliques exceeding the resource capacity are remembered (and not further

extended)

J so-far found part of clique !

MCS-expand(zT
for each v; € pending(p)

else if pending(m;) #

end

pending candidates to be included in the clique

clique(m;) « clique(p) U {v;}
if clique(m;) is over-consuming then MCS «— MCS U clique(m;)

o=

(they are connected with every node in p)

add a new node m; successor of p
pending(m;) < {v; € pending(p) | j < i and (v;,v;) € E'}

not finding identical cliques

() then MCS-expand(m;)

* The algorithm starts with a clique found so far (at the beginning it is empty)
and a set of pending candidates to be included in the clique (at the beginning

it is empty).

* We look for possible extensions of the clique by a node v, (and then nodes

with index smaller than i).

MCS-expand(p)
for each v; € pending(p) do
add a new node m; successor of p
pending(m;) «— {v; € pending(p) | 7 < i and (v;,
clique(m;) « clique(p) U {v;}

if clique(m;) is over-consuming than MCS « MCS U clique(m;)

else if pending(m;) # 0 than MCS-expand(m;)
end

v;) € E}

v2:60

v]:50 =
—_

v5:50

N7y

v7:40

(a)

v3:20
g0 4

Q=100

v2
vy

v7
(b)

{v1}
@ {v2}
D {va} {vs}
o {v1, v2, v3, v4}
{v3, va} Q2. ve) / <{va.ved>
@ {v3, v}
@
{v1, v5} 6@ {v1, v7}
@ {v3, vs} ta} @
& {v2,v7} {v3,v7}
v2, vsP> <{v3.va, vs5}> @ @

clique(n)
pending(n)

Lo 7>
GD
@ &=

How to remove a resource conflict?

* LetU={z@[t,t/):q, | i€l} be a minimal critical set then any temporal
constraint t;’< t, for i,j€l removes the resource conflict.
— this constraint removes edge (i,j) from the graph so U is no more a clique

— any larger clique U’: UCU’ is no more a clique
— no smaller clique U’: U'CU was conflicting

* Some of suggested temporal constraints can be in temporal conflict with

other constraints.
— Example: t,'<t, is in conflict with t,’<t,” and t,<t,
— Such resolvers are not used!

* Some suggested constraints are too strong (force removal of other edges

from the graph).

— Example: t,'<t; is too strong as it forces t,'<t; (via t,’<t,’)

— The planning algorithm will select one
resolver to repair MCS so it is better to

v2:60
use only the necessary resolvers so VIS0 | o—
they do not force other resolvers. ' S ve-70
v5:50)I%I

Ne———rt

CPR(®, G, K, M,)
if G = K = M = 0 then return(r)
perform the three following steps in any order
if G # () then do
select any a € G
if 0(a/®) # 0 then return(CPR(®,G — {a}, KU 8(a/®), M,))
else do
relevant < {a | a applicable to ® and has a provider for o}
if relevant = () then return(failure)
nondeterministically choose a € relevant
M’ «— the update of M with respect to ® U (F(a),C(a))
return(CPR(®U (F(a),C(a)), GUF(a), KU{0(a/®)}, M',7U{a}))
if K # 0 then do
select any C' € K
threat-resolvers « {¢ € C' | ¢ consistent with ®}
if threat-resolvers = () then return(failure)
nondeterministically choose ¢ € threat-resolvers
return(CPR(® U ¢, G, K — C, M,))
if M # () then do
select U € M
resource-resolvers «— {¢ resolver of U | ¢ is consistent with ®}
if resource-resolvers = () then return(failure)
nondeterministically choose ¢ € resource-resolvers
M’ — the update of M with respect to ® U ¢
return(CPR(® U ¢, G, K, M,))

end

We just extent the
algorithm for planning
with chronicles to
work with minimal
conflict sets (in M) to
resolve resource
conflicts

© 2014 Roman Bartak
Department of Theoretical Computer Science and Mathematical Logic
bartak@ktiml.mff.cuni.cz

