Planning & Scheduling

Roman Bartak

Department of Theoretical Computer Science and Mathematical Logic

What is the content?

— planning and scheduling
— but what is planning and scheduling?

Why could it be interesting to me?
— is it used somewhere?
— any applications?

What is the course about?

— problem formalisation and modelling

— solving approaches

What?

What is planning and scheduling?
What is a difference between them?

Plan
pickup(C)
putontable(C,table)
pickup(B)
puton(B,D)
pickup(C)
puton(C,B)
OOO - 7
- b gymasd —_—
Sl v
— J/) \lg —
[B
yr—4 y—4

Initial state

Input:
— initial (current) state of the world
— description of actions that can change the world
— desired state of the world
Output:
— a sequence of actions (a plan)

Properties:

— actions in the plan are unknown B\\
— time and resources are not assumed - el |

@
1

Input:
— a set of partially ordered activities

— available resources (machines, people, ...)

Output:

— allocation of activities to time and resources

(schedule)

* Properties:
— activities are known in advance
— limited time and resources

Planning

— deciding which actions are necessary to
achieve the goals

— topic of artificial intelligence

— complexity is usually worse than NP-c
(in general, undecidable)

Scheduling

— deciding how to process the actions using
given restricted resources and time

— topic of operations research
— complexity is typically NP-c

planning

executing

Why?

Is this technology practically useful?
Any applications?

570 tasks, 17 resources
A traditional approach:
— ARTEMIS
— 20 hours to produce a schedule
Intelligent Planning and Scheduling:
— ARTEMIS substituted by a CSP
— 30 minutes to generate an optimal schedule
— 10 - 15% shorter makespan
Savings:
— 4 to 6 days shorter scheduled
— $200k — S1m per day

Contribution of On Time Systems

7000 tasks per boat and approx. 125 resource classes
A traditional approach: B =
— ARTEMIS
— 6 weeks to generate a schedule
— very non-uniform resource profile

Intelligent Planning and Scheduling:
— ARTEMIS substituted by a CSP
— 2 days per schedule
— uniform resource profile

Resource Usesge:

e 8 & B B B & & 8

SaVingS: % L “ L e 100 120 140 160 180 20
— 30% less overtime and sub-contracts

Contribution of On Time Systems

Gulf war 1991:

A traditional approach:
 hundreds of human planners
« months to generate a plan
Intelligent Planning and Scheduling:
» System O-PLAN2
Savings:
« faster background creation
* less flight missions

 Financial backflow >> all research AI
supported by US government:
— since 1956
— not only IP&S, but but all AI research!

Contribution of On Time Systems

Launch: October 24, 1998
Target: Comet Borrelly

testing a payload of 12 advanced, high risk
technologies

— autonomous remote agent

* planning, execution, and monitoring spacecraft activities
based on general commands from operators

* three testing scenarios
— 12 hours of low autonomy (execution and monitoring)
— 6 days of high autonomy (operating camera, simulation of faults)
— 2 days of high autonomy (keep direction)
» beware of backtracking!

Departure management %2 it
— pre-flight control .
+ exit assignment and clearance \\'ij,.\-:.zo_;f‘)
» coordinates with Brussels N

- HOLANSG .
SRR AL

— ground control

« taxiing
— control tOWe.r - % Bt i
* runway assignment RAK NDB

* separation

MANTEA

(MANagement of surface Traffic in
European Airports)

m implemented in ILOG Scheduler
m tested in Prague (27.5. — 7.6. 2002)

Contribution of NLR

About what?

What does this course bring?
Which topics are covered?

Preliminaries
— search algorithms, constraint satisfaction and SAT

Planning
— classical planning (STRIPS)
— neo-classical planning (Graphplan)
— hierarchical planning
— planning with time and resources

Scheduling

— classical scheduling

— constraint-based scheduling v@_
Applications -

Automated Planning: Theory and Practice
« M. Ghallab, D. Nau, P. Traverso
 http://www.laas.fr/planning/

« Morgan Kaufmann

AUTOMATED

SCHEDULING _
ool Handbook of Scheduling

LA = J. Leung
m Chapman&Hall/CRC

Scheduling Algorithms
Scheduling
« P. Brucker Algorithms

« Springer

CONSTRAINT-BASED
SCHEDULING
Applying Constraint
Programming to
Scheduling
Problems

Philippe Baptiste

Claude Le Pape

b Constraint-based Scheduling
m P. Baptiste, C. Le Pape, W. Nuijten
m Kluwer

/2 Planovani a rozvrhovani - Windows Internet Explorer =10 x|
6@ ~ [&] htto://kt.mf.cuni.czjbartakfplanovanifindex. html

% ¢ @pianovani arozvihovani | |

Pl

|-2> Strénka + (G Nastroge +

Planovani a rozvrhovani
NAILO71, 2/0 Zk, letni semestr

Roman Bartak, KTIML

|1k
l,...n.o‘i Zdroje | Prednaska | Zkouska | Kontakt
Planovani j

je rozumovou slozkou kondni. Jeho cilem je vybrat a usporadat akce tak, aby se co nejlépe dosahlo vytyZeného
cile. Rovrhovani se potom stard o optimalni realizaci planu v prostiedi s omezenymi zdroji a Casem.

Zdroje: nahoru

Prednaska je pripravena prevazné podie knihy M. Ghallab, D. Nau, P. Traverso: Automated Planning: Theory
and ice, Morgan 2004. 5ly ke knize jsou dostupné na webu.

AUTOMATED
Nékteré pasaze jsou podrobnéji zpracovany v anglickych tutorialech:

. C i isfaction for ing and ing [WWW], ICAPS 2004
« Filtering i in ing and ing [slajdy], ICAPS 2006

Dalsi informace Ize erpat ze stranek sité excelence PLANET, konferenci ICAPS a MISTA.

PFednaska (Ls 2008/2009): nahoru
itery 15:40 - 17:10, poslucharna S4 (Mala Strana, 3. patro)

Tento rozvrh je predbézny a je mozné, Ze bude v pribéhu semestru modifikovan.

24.02. 2009 Uvod, planovaci vs. rozvrhovaci problém, ukazky aplikaci. Obecné prohledavaci algoritmy, omezujici H
podminky a SAT.

03.03. 2009 F al problému Zinova a klasicka b |

10.03.2009 Planovani se stavovym prostorem (dopfedné, zpétné, STRIPS). H

17.03. 2009 Planovani s prostorem plani B

24.03. 2009 Neoklasické planovani. Planovaci graf, Graphplan. 2

31.03. 2009 pravdépodobné odpadne

07.04. 2009 Planovani jako SAT. Planovani jako CSP. 2l

14.04. 2009 Modely Easu (algebra okamsikd, algebra intervald, tempordini sité) =

21.04. 2009 Planovéni s Easem a se zdroji 2l

2204 2000 Dldnuinri hrickiln: Fidind memidln_hineaeshinl A nlsnmrint = =l
[T @ ntemet Ko -

Preliminaries

What am | supposed to know?

e search techniques

* basics of constraint satisfaction
* logic and SAT

Search techniques are the core solving approach
used in Al (and beyond Al).

Classes of search techniques:

- State-space search
— find a state (path to a state) with some properties

* Problem-reduction search
— find a reduction of task to primitive tasks

soundness
— The output of the algorithm is a problem solution.

completeness
— If there is any solution then the algorithm finds it.
admissibility
— The algorithm guarantees finding an optimal
solution.
— There must be some measure of optimality!
— It also means soundness and completeness.

State space S is a set of nodes (states) and the
task is to find a state satisfying some goal
condition g.

Formally, the problem specification is a triple
(S0,8,0):

— S, is the initial state

— g is a goal condition (the goal state satisfies g(s))

— O is a set of operators defining the next state

 State space is defined recursively as:
— 5,ES,; if s€S, 0€0 and o(s) is defined then o(s)ES

* o(s) is a child of node s

Breadth-First Search
explores tree levels
— (is a queue

e sound and complete

* Complexity to find a goal node at depth d with
the branching factor b:
— time complexity O(bd)
— space complexity O(bY)

Depth-First Search
(backtracking)
go in one direction
backtrack upon failure
— ¢ is a stack

* Sound and complete, if there are no infinite branches
or can be detected.

e Complexity to find a goal node at depth d:

— Time complexity depends on teh selected direction (can
explore a complete search space but can also go directly to
the goal)

— space complexity O(d)

Sometimes we are looking for a goal state while
minimizing an objective
function f(s).

Best-First Search
Go to the best next state
— q is a priority queue

* If fis not decreasing (s‘=o(s) = f(s)=f(s’)), then the found
solution is optimal. If the search space is finite then the
algorithm is admissible.

* If there is some 8>0 s.t. s'=0(s) = f(s)+0=f(s’), then the
algorithm is admissible even for infinite search space.

Another algorithm optimizing objective f.

Depth-First Branch-and-Bound Search
Explore “all” branches
and remember the best

— q is a stack

e If fis not decreasing and
a state space is finite and
with no loops, then the
algorithm is.

Greedy Search
Like DFS
but no backtracks

* No guarantee of optimality

* Sometimes saves a lot of time necessary to
prove optimum.

* Frequently used to find the first solution.

Sometimes the operator o gives a set of children, sub-
problems, and solution of them represents a portion of

the solution of the parent.
This gives an AND-OR graph.

U Problem-reduction search

Problem Reduction Search
Decompose the problem
and find solutions of sub-problems

* non-deterministic
* npaive

— Repeatedly solves
common sub-problems

Modeling (problem formulation)
— N queens problem

— decision variables for positions of queens in rows
r(i) in {1,...,N} | Wl i N |

— constraints describing (non-)conflicts
Vizj r(i) = r(j) & [i-j] = [r(i)-r(j)|

Search and inference (propagation)

— backtracking (assign values and return upon failure)
— infer consequences of decisions

via maintaining consistency %@@@ il iy i |
) X X X X% W x

of constraints “m . Wil I
X X [X X | X

X % N % %

based on declarative problem description via:

— variables with domains (sets of possible values)
describe decision points of the problem with possible
options for the decisions

e.g. the start time of activity with time windows

— constraints restricting combinations of values,
describe arbitrary relations over the set of variables
e.g. end(A) < start(B)

A feasible solution to a constraint satisfaction problem

is a complete assignment of variables satisfying all the
constraints.

An optimal solution to a CSP is a feasible solution
minimizing/maximizing a given objective function.

Search is combined with filtering techniques
that prune the search space.

Maintaning Arc Consistency During Search

@ http://kti.mff.cuni.cz/~bartak/podmink £~ 2 ¢ X | @ Programovani s omezujici... %

R — z s s = s -
T Programovani s omezujicimi podminkami
s °‘~ 3sen NOPTO042, 2/1 Zk, zimni semestr
3 OrEn
1 s
LeA38Y g1 Roman Bartak, KTIML
Zdroje | Pfednadka | Cviceni | Zkou3ka | Kontakt E
Progr ani s jicil i predstavuje jeden nejblizsich piistupdl, které poéitatova véda udélala ke Svatému gralu

programovani: uZivatel popiSe problém a pocitac ho vyfesi.

Eugene C. Freuder, Constraints 1997

Zdroje: nahoru

Vybornym dopliikovym zdrojem informaci k pfedna3ce je kniha R. Dechter: Constraint Processing, Morgan
Kaufmann, 2003. Materidly ke knize jsou dostupné na webu.

Pro pokrocilejsi studenty je vhodnym zdrojem informaci kniha F. Rossi, P. van Beek, T. Walsh (eds.):
Handbook of Constraint Programming, Elsevier, 2006.

V Ceském jazyce zatim neni dostupna Zadna kniha, v pfipravé je kniha Omezujici podminky.

Prednaska (zs 2010/2011): nahoru
pondéli 10:40 - 12:10, poslucharna S9 (Mala Strana, 2. patro)

Predb&zny rozvrh, ktery mdze byt b&hem roku modifikovan.

04.10. 2010 Uvod, historické islosti, ukazky aplikaci, i jicic it Definice CSP. =
Binarizace podminek.

11.10. 2010 odpada

18.10. 2010 Prehled algoritmd pro fe3eni podminek prohledavanim. Metoda generuj a testuj. Algoritmy lokalniho =

prohledévéni (HC, MC, RW, TS) -

A formal system consisting of three constituents:
— language
(a set of possible statements called formulas)
e.g.p —=q
— semantics
(assigns a meaning to each statement)
e.qg. if both p and q are true then p — q is true

— proof theory
(rules to transform statements and derive new
statements)
e.g. the modus ponens rule (p, p = q -q)

The language is a set P of propositions — defined inductively
starting from an enumerable set of atomic propositions
(propositional variables) Py:

— if p€P, then pEP,

— if p&P then —p&P,

— If p&€P andg&P then pAgEP,

— Nothing else is a propositional formula.

* We can also define
— pvq as abbreviation for = (=p A =q)
— p—q as abbreviation for —=p v q

e Conjunctive Normal Form (CNF):
— formula is a conjunction of clauses
— clause is a disjunction of literals (clause with a single literal is call a
unit clause)

— literal is a propositional variable (positive literal) or its negation
(negative literal)

A model of propositional formula is an assignment of
truth values to the propositional variables
(interpretation) for which the formula evaluates to
true:

— =pistrueif and only if p is not true

— pAqis true if and only if both p and g are true

A satisfiability problem (SAT) is the problem of
determining whether a formula has a model.

* The SAT problem (given as a CNF) can be solved using
depth-first search with unit propagation.

* Unit propagation determines the truth values of
literals in unit clauses as follows:
— the variable in a positive literal is assigned to true,
— the variable in a negative literal is assigned to false
The assigned value is propagated to other clauses as follows.
If D is assigned to true then:

* the clause containing D (e.g. A v =B v D) can be discarded

* the clauses containing =D (e.g. Cv =D v E) can be simplified by
removing =D (C v E)

Symmetrically for the case when D is assigned to false.

Algorithm DPLL

procedure DP(A, Assignment)
A: is a CNF formula (represented as a set of clauses)
A and Assignment are local within DP
if J€A then return
if A=0 then exit with Assignment
Unit-Propagate(A, Assignment)
select a variable P such that P or —=P occurs in A
DP(AU{P},Assignment)
DP(AU{-P},Assignment)

end DP

procedure Unit-Propagate(A, Assignment)
A and Assignment are global within Unit-Propagate
while there is a unit clause {lI} in A do
Assignment < Assignment U {lI}
for every clause CEA do
if l=ECthen A < A - {C}
else if -lIeCthen A <~ A-{C} U (CH{-1})
end Unit-Propagate

© 2015 Roman Bartak
Department of Theoretical Computer Science and Mathematical Logic
bartak@ktiml.mff.cuni.cz

