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Abstract:     Constraint-based scheduling is a powerful tool for solving real-life scheduling problems thanks to a natural 
integration of special solving algorithms encoded in global constraints. The filtering algorithms behind these 
constraints are based on propagation rules modelling some aspects of the problems, for example a unary resource. 
This paper describes new incremental propagation rules integrating a propagation of precedence relations and time 
windows for activities allocated to a unary resource. Moreover, the rules also cover so called optional activities 
that may or may not be present in the final schedule. 
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1. INTRODUCTION 

Real-life scheduling problems usually include a variety of constraints so special scheduling algorithms (Brucker, 
2001) describing a single aspect of the problem can hardly be applied to solve the problem completely. Constraint-
based scheduling (Baptiste, Le Pape, Nuijten, 2001) provides a natural framework for modelling and solving real-life 
problems because it allows integration of different constraints. The above mentioned special scheduling algorithms 
can be often transformed into propagators for the constraints so the big effort put in developing these algorithms is 
capitalised in constraint-based scheduling. 
 Many filtering algorithms for specialised scheduling constraints have been developed in recent years (Baptiste, Le 
Pape, Nuijten, 2001). There exist algorithms based for example on edge-finding (Baptiste & Le Pape, 1996) or not-
first/not-last (Torres & Lopez, 1997) techniques that restrict the time windows of the activities. Other algorithms are 
based on relative ordering of activities, for example filtering based on optimistic and pessimistic resource profiles 
(Cesta & Stella, 1997). Recently, as scheduling and planning technologies are coming together, filtering algorithms 
combining filtering based on relative ordering and time windows appeared. Detectable precedences by Vilím (2002) 
are one of the first attempts for such a combination. Laborie (2003) presents a similar rule called energy precedence 
constraint for reservoir-like resources.   
 Filtering algorithms for scheduling constraints typically assume that all the constrained activities will be included 
in the final schedule. This is not always true, for example assume that there are alternative processes to accomplish a 
job or alternative resources per activity. These alternatives are typically modelled using optional activities that may 
or may not be included in the final schedule depending on which process or resource is selected. The optional 
activity may still participate in the constraints but it should not influence other activities until it is known to be in the 
schedule. This could be realised by allowing the duration of the optional activity to be zero for time-windows based 
filtering like edge-finding (Baptiste, Le Pape, Nuijten, 2001). However, this makes filtering weaker and as shown in 



 
 
(Vilím, Barták, Čepek, 2004) a stronger and faster filtering can be achieved if optional activities are assumed in the 
filtering algorithm directly. The paper (Focacci, Laborie, Nuijten, 2000) proposed a global precedence graph where 
alternative resources correspond to paths in the graph, but the graph is used merely for cost-based filtering 
(optimization of makespan or setup times). 
 In this paper we address the problem of integrated filtering based on precedence relations and time windows. From 
the beginning we assume the existence of optional activities. A filtering algorithm for these so called detectable 
precedences with optional activities on a unary resource has been proposed in (Vilím, Barták, Čepek, 2004). This 
algorithm uses Θ-Λ-tree to achieve O(n.log n) time complexity and it is a monolithic algorithm (must be repeated 
completely if there is any change of domains). The same pruning can be achieved by the energy precedence 
constraint proposed by Laborie (2003) if it is applied to a unary resource (the energy precedence constraint is defined 
for reservoirs). However, the energy precedence constraint is not defined for optional activities and details of 
implementation are not given in the paper. 
 We propose a new set of propagation rules that keep a transitive closure of the precedence relations, deduce new 
precedence relations, and shrink the time windows of the activities. They may also deduce that some optional activity 
will not be present in the final schedule. There are two main differences from the algorithm proposed in (Vilím, 
Barták, Čepek, 2004). First, we use “light” data structures, namely domains of variables. Second, the new rules are 
incremental so they directly react to changes of particular domains rather than running a monolithic algorithm from 
scratch. Such rules are much easier for implementation and for integration to existing constraint solvers and the hope 
is that their incremental nature will lead to a good practical efficiency. The implementation of the rules is currently 
being done so the paper reports a work in progress. 
 The paper is organised as follows. We first give more details on the problem to be solved. Then we describe the 
constraint services available for implementation of new constraints. In the main part of the paper, we describe a 
constraint-based representation of the precedence graph and we propose a set of propagation rules for the precedence 
graph. After that, we describe propagation rules for shrinking time windows by using information about precedence 
relations. 

2. THE PROBLEM 

In this paper we address the problem of modelling a unary resource where activities must be allocated in such a way 
that they do not overlap in time. We assume that there are time windows restricting the position of these activities. 
The time window [R,D] for an activity specifies that the activity cannot start before R (release time) and cannot 
finish after D (deadline). We assume the activity to be non-interruptible so the activity occupies the resource from its 
start till its completion, that is, for a time interval whose length is equal to the given length of the activity. We also 
assume that that there are precedence constraints for the activities. The precedence constraint A«B specifies that 
activity A must not finish later than activity B starts. The precedence constraints describe a partial order between the 
activities. The goal of scheduling is to decide a total order that satisfies (extends) the partial order (this corresponds 
to the definition of a unary resource) in such a way that each activity is scheduled within its time window. Last but 
not least we allow some activities to be so called optional. It means that it is not known in advance whether such 
activities are allocated to the resource or not. If the optional activity is allocated to the resource, that is, it is included 
in the final resource schedule then we call this activity valid. If the activity is known not to be allocated to the 
resource then we call the activity invalid. In other cases, that is, the activity is not decided to be or not to be allocated 
to the resource, we call the activity undecided. Optional activities are useful for modelling alternative resources for 
the activities (an optional activity is used for each alternative resource and exactly one optional activity becomes 
valid) or for modelling alternative processes to accomplish a job (each process may consist of a different set of 
activities). 
 Note that for the above defined problem of scheduling with time windows it is known that deciding about an 
existence of a feasible schedule is NP-hard in the strong sense (Garey & Johnson, 1979) even when no precedence 
relations or optional activities are considered, so there is a little hope even for a pseudo-polynomial solving 
algorithm. Hence using propagation rules and constraint satisfaction techniques is justified there. 

3. CONSTRAINTS AND CONSTRAINT SERVICES 

Constraint satisfaction problem is defined as a triple (X,D,C), where X is a finite set of variables, D is a set of 
domains for these variables, each variable may have its own domain which is a finite set of values, and C is a set of 
constraints restricting possible combinations of the values assigned to variables (a constraint is a relation over the 



 
 
variables’ domains). The task is to find a value for each variable from the corresponding domain in such a way that 
all the constraints are satisfied (Dechter, 2003). 
 There exist many constraint solvers that provide tools for solving constraint satisfaction problems, for example 
ILOG Solver, Mozart or the clpfd library of SICStus Prolog. These solvers are typically based on combination of 
domain filtering with depth-first search. Domain filtering is a process of removing values from the domains that do 
not satisfy some constraint. Each constraint has a filtering algorithm assigned to it that does this job for the 
constraint, and these algorithms communicate via the domains of the variables – if a filtering algorithm shrinks a 
domain of some variable, the algorithms for constraints that use this variable propagate the change to other variables 
until a fixed point is reached or until some domain becomes empty. Such a procedure is called a (generalised) arc 
consistency. When all domains are reduced to singletons then the solution is found. If some domain becomes empty 
then no solution exists. In all other cases the search procedure splits the space of possible assignments by adding a 
new constraint (for example by assigning a value to the variable) and the solution is being searched for in sub-spaces 
defined by the constraint and its negation (other branching schemes may also be applied). 
 The constraint solvers usually provide an interface for user-defined filtering algorithms so the users may extend 
the capabilities of the solvers by writing their own filtering algorithms (Schulte, 2002). This interface consists of two 
parts: triggers and propagators. The user should specify when the filtering algorithm is called – a trigger. This is 
typically a change of domain of some variable, for example when the lower bound of the domain is increased, the 
upper bound is decreased, or any element is deleted from the domain. The propagator then describes how this 
change is propagated to domains of other variables.  The constraint solver provides procedures for access to domains 
of variables and for operations over the domains (membership, union, intersection, etc.). The output of the 
propagator is a proposal how to change domains of other variables in the constraint. The algorithm may also deduce 
that the constraint cannot be satisfied (fail) or that the constraint is entailed (exit). We will describe the propagation 
rules in such a way that they can be easily transformed into a filtering algorithm in the above sense. Each 
propagation rule will consist of a trigger describing when the rule is activated and a propagator describing how the 
domains of other variables are changed. 

4. RULES FOR THE PRECEDENCE GRAPH 

As we mentioned above, precedence relations are defined among the activities. These precedence relations define a 
precedence graph which is an acyclic directed graph where nodes correspond to activities and there is an arc from A 
to B if A«B. Frequently, the scheduling algorithms need to know whether A must be before B in the schedule, that is 
whether there is a path from A to B in the precedence graph. It is possible to look for the path each time such a query 
occurs. However, if such queries occur frequently then it is more efficient to provide the answer immediately, that is, 
in time O(1). This can be achieved by keeping a transitive closure of the precedence graph. 

Definition 1: We say that a precedence graph G is transitively closed if for any path from A to B in G there is also an 
arc from A to B in G. 

Defining the transitive closure is more complicated when optional activities are assumed. In particular, if A«B and 
B«C and B is undecided then we cannot deduce that A«C simply because if B is removed – becomes invalid – then 
the path from A to C is lost. Therefore, we need to define transitive closure more carefully. 

Definition 2: We say that a precedence graph G with optional activities is transitively closed if for any two arcs A to 
B and B to C such that B is a valid activity and A and C are either valid or undecided activities there is also an arc A 
to C in G. 

It is easy to prove that if there is a path from A to B such that A and B are either valid or undecided and all inner 
nodes in the path are valid then there is also an arc from A to B in a transitively closed graph (by induction of the 
path length). Hence, if no optional activity is used (activities are valid) then Definition 2 is identical to Definition 1. 
 In the next paragraphs we will propose a constraint model for the precedence graph and two propagation rules that 
maintain the transitive closure of the graph with optional activities. We index each activity by a unique number from 
the set 1,..,n, where n is the number of activities. For each activity we use a 0/1 variable Valid indicating whether the 
activity is valid (1) or invalid (0). If the activity is not known yet to be valid or invalid then the domain of Valid is 
{0,1}. The precedence graph is encoded in two sets attached to each activity. CanBeBefore is a set of indices of 
activities that can be before a given activity. CanBeAfter is a set of indices of activities that can be after the activity. 
If we add an arc between A and B (A«B) then we remove the index of A from CanBeAfter(B) and the index of B 
from CanBeBefore(A). For simplicity reasons we will write A instead of the index of A. Note that these sets can be 
easily implemented as finite domains of two variables so a special data structure is not necessary. For this 
implementation we propose to include value 0 in above two sets to ensure that the domain is not empty even if the 



 
 
activity is first or last (an empty domain in CSP indicates the non-existence of a solution). The value 0 is not 
assumed as an index of any activity in the propagation rules. To simplify description of propagation rules we define 
for every activity A the following sets (not kept in memory but computed on demand): 

 MustBeAfter (A) = CanBeAfter(A)  \  CanBeBefore(A) 
 MustBeBefore(A)  = CanBeBefore(A)  \  CanBeAfter(A) 
 Unknown(A)  = CanBeBefore(A)  ∩  CanBeAfter(A). 

MustBeAfter(A) and MustBeBefore(A)  are sets of those activities that must be after and before the given activity A 
respectively. Unknown(A) is a set of activities that are not yet known to be before or after activity A. 
 We initiate the precedence graph in the following way. First, the variables Valid(A), CanBeBefore(A), and 
CanBeAfter(A)  with their domains are created for every activity A. Then the known precedence relations are added 
in the above-described way (domains of CanBeBefore(A) and CanBeAfter(A) are pruned). Finally, the Valid(A)  
variable for every valid activity A is set to 1 (activities that are known to be invalid from the beginning may be 
omitted from the graph).  
 Propagation rule /1/ is invoked when the validity status of the activity becomes known. “Valid(A) is instantiated” 
is its trigger. The part after  is a propagator describing pruning of domains. “exit” means that the constraint 
represented by the propagation rule is entailed so the propagator is not further invoked (its invocation does not cause 
further domain pruning). We will use the same notation in all rules. 

 Valid(A) is instantiated  /1/ 
if Valid(A) = 0 then 
  for each B do /* disconnect A from B */ 
   CanBeBefore(B) ← CanBeBefore(B) \ {A} 
   CanBeAfter(B) ← CanBeAfter(B) \ {A} 
else /* Valid(A)=1 */ 
  for each B∈MustBeBefore(A) do 
   for each C∈MustBeAfter(A)\MustBeAfter(B) do 
    /* new precedence B«C */ 
    CanBeAfter(C) ← CanBeAfter(C) \ {B} 
    CanBeBefore(B) ← CanBeBefore(B) \ {C} 
    if B∉CanBeBefore(C) then    // break the cycle 
        post_constraint(Valid(B)=0 ∨ Valid(C)=0) 
exit 

Observation: Note that rule /1/ maintains symmetry for all valid and undecided activities because the domains are 
pruned symmetrically in pairs. This symmetry can be defined as follows: if Valid(B)≠0 and Valid(C)≠0 then 
B∈CanBeBefore(C) if and only if C∈CanBeAfter(B). This moreover implies that B∈MustBeBefore(C) if and only if 
C∈MustBeAfter(B). 
 
We shall show now, that if the entire precedence graph is known in advance (no arcs are added during the solving 
procedure), then rule /1/ is sufficient for keeping the (generalised) transitive closure according to Definition 2. To 
give a formal proof we need to define several notions more precisely.   
 Let J={0,1, … ,n} be the set of activities, where 0 is a dummy activity with the sole purpose to keep all sets 
CanBeAfter(i) and CanBeBefore(i) nonempty for all 1≤i≤n. Furthermore, let G=(J\{0},E) be the given precedence 
graph on the set of activities, and GT=(J\{0},T) its (generalised) transitive closure (note that the previously used 
notation i«j does not distinguish between the arcs which are given as input and those deduced by transitivity). The 
formal definition of the set T can be now given as follows:  

1. if (i,j)∈E then (i,j)∈T 
2. if (i,j)∈T and (j,k)∈T and Valid(i)≠0 and Valid(j)=1 and Valid(k)≠0 then (i,k)∈T 

Furthermore, the set T is not maintained as a list of pairs of activities. Instead, it is represented using the set variables 
CanBeAfter(i) and CanBeBefore(i), 1≤i≤n in the following manner: (i,j)∈T if and only if i∉CanBeAfter(j) and 
j∉CanBeBefore(i). The incremental construction of the set T can be described as follows.  



 
 

Initialization: for every i ∈ J\{0} set 
• CanBeAfter(i) ← J\{i} 
• CanBeBefore(i) ← J\{i} 
• Valid(i) ← {0,1} 

Set-up: for every arc (i,j)∈E set 
• CanBeAfter(j) ← CanBeAfter(j)\{i} 
• CanBeBefore(i) ← CanBeBefore(i)\{j} 

Propagation: whenever an activity is made valid, call rule /1/ 

Clearly, T is empty after the initialization and T=E after the set-up. Now we are ready to state and prove formally 
that rule /1/ is sufficient for maintaining the set T. 

Proposition 1: Let i0, i1, … , im be a path in E such that Valid(ij)=1 for all 1≤j≤m-1 and Valid(i0)≠0 and Valid(im)≠0 
(that is, the endpoints of the path are both either valid or undecided and all inner points of the path are valid). Then 
(i0,im)∈T, that is, i0∉CanBeAfter(im) and im∉CanBeBefore(i0). 

Proof: We shall proceed by induction on m. The base case m=1 is trivially true after the set-up. For the 
induction step let us assume that the statement of the lemma holds for all paths (satisfying the 
assumptions of the lemma) of length at most m-1. Let 1≤j≤m-1 be an index such that Valid(ij)←1 was 
set last among all inner points i1, … , im-1 on the path. By the induction hypothesis we get  

• i0∉CanBeAfter(ij) and ij∉CanBeBefore(i0) using the path i0, … , ij 
• ij∉CanBeAfter(im) and im∉CanBeBefore(ij) using the path ij, … , im 

We shall distinguish two cases. If im∈MustBeAfter(i0) (and thus by symmetry also 
i0∈MustBeBefore(im)) then by definition im∉CanBeBefore(i0) and i0∉CanBeAfter(im) and so the claim 
is true trivially. Thus let us in the remainder of the proof assume that im∉MustBeAfter(i0). 

Now let us show that i0∈CanBeBefore(ij) must hold, which in turn  (together with i0∉CanBeAfter(ij)) 
implies i0∈MustBeBefore(ij). Let us assume by contradiction that i0∉CanBeBefore(ij). However, at the 
time when both i0∉CanBeAfter(ij) and i0∉CanBeBefore(ij) became true, that is, when the second of 
these conditions was made satisfied by rule /1/, rule /1/ must have posted the constraint (Valid(i0)=0 ∨ 
Valid(ij)=0) which contradicts the assumptions of the lemma. By a symmetric argument we can prove 
that im∈MustBeAfter(ij). Thus when rule /1/ is triggered by setting Valid(ij)←1 both 
i0∈MustBeBefore(ij) and im∈MustBeAfter(ij) hold (and im∉MustBeAfter(i0) is assumed), and therefore 
rule /1/ removes im from the set CanBeBefore(i0) as well as  i0 from the set CanBeAfter(im), which 
finishes the proof. 

From now on there will be no need to distinguish between the “original” arcs from E and the transitively deduced 
ones, so we will work solely with the set T. To simplify notation we shall switch back to the A«B notation (which is 
equivalent to (A,B) ∈ T). 
 In some situations arcs may be added to the precedence graph during the solving procedure, either by the user, by 
the scheduler, or by other filtering algorithms like the one described in the next section. The following rule updates 
the precedence graph to keep transitive closure when an arc is added to the precedence graph. 

 A«B is added  /2/ 
  CanBeAfter(B) ← CanBeAfter(B) \ {A} 
   CanBeBefore(A) ← CanBeBefore(A) \ {B} 
  if A∉CanBeBefore(B) then    // break the cycle 
       post_constraint(Valid(A)=0 ∨ Valid(B)=0) 
  else 
       if Valid(A)=1 then    // transitive closure 
    for each C∈MustBeBefore(A)\MustBeBefore(B) do 
      add C«B  
   if Valid(B)=1 then    // transitive closure 
    for each C∈MustBeAfter(B)\MustBeAfter(A) do 
      add A«C 

  exit 

The rule /2/ does the following. If a new arc A«B is added then the sets CanBeBefore(A) and CanBeAfter(B) are 
updated. If a cycle is detected then the cycle is broken in the same way as in rule /1/. The rest of the propagation rule 
ensures that if an arc is added and one of its endpoints is valid then other arcs are added recursively to keep a 
transitive closure. The following proposition shows that all necessary arcs are added by rule /2/. 



 
 
Proposition 2: If the precedence graph G is transitively closed and arc A«B is added to G then the propagation rule 
/2/ updates the precedence graph G to be transitively closed again. 

Proof: Assume that arc A«B is added into G at a moment when arc B«C is already present in G. 
Moreover assume that Valid(A)≠0, Valid(B)=1, and Valid(C)≠0. We want to show that  A«C is in G 
after rule /2/ is fired by the addition of A«B. The presence of arc B«C implies that C∈MustBeAfter(B) 
(and by symmetry also B∈MustBeBefore(C)). Now there are two possibilities. Either 
C∉MustBeAfter(A) in which case rule /2/ adds the arc A«C into G, or C∈MustBeAfter(A) (and by 
symmetry also A∈MustBeBefore(C)) which means that arc A«C was already present in G when arc 
A«B was added. 
The case when arc A«B is added into G at a moment when arc C«A is already present in G and  
Valid(C)≠0, Valid(A)=1, Valid(B)≠0 holds can be handled similarly. 
Thus when an arc is added into G, all paths of length two which include this new arc are either already 
spanned by a transitive arc, or the transitive arc is added by rule /2/. In the latter case this may invoke 
adding more and more arcs. However, this process is obviously finite (cannot cycle) as an arc is added 
into G only if it is not present in G, and if an arc is removed form G (breaking the cycle), it can never be 
added back as one of its endpoins becomes invalid (and thus is permanently disconnected from G).  
Therefore, it is easy to see, that when the process of recursive arc additions terminates, the graph G is 
transitively closed. Indeed, for every path of length two in G one of the arcs is added later than the 
other, and we have already seen that at a moment of such an addition the transitive arc is either already 
on G or is added by rule /2/ in the next step. 

5. RULES FOR TIME WINDOWS 

An absolute position of the activity in time is frequently restricted by a release time and deadline that define a time 
window for processing the activity. The activity cannot start before the release time and it must be finished before the 
deadline. We assume the activity to be uninterruptible so it occupies the resource from its start till its completion. 
The processing time of activity A is constant, we denote it by p(A). The goal of time window filtering is to remove 
time points from the time window when the activity cannot be processed. Usually, only the lower and upper bounds 
of the time window change so we are speaking about shrinking the time window. 
 The standard constraint model for time allocation of the activity assumes two variables – start(A) and end(A) – 
describing when the activity A starts and completes. Initially, the domain for the variable start(A) is 
[release_time(A), deadline(A)-p(A)] and, similarly, the initial domain for the variable end(A) is  
[release_time(A)+p(A), deadline(A)]. If these two initial domains are empty then the activity is made invalid. We 
will use the following notation to describe bounds of the above domains: 

 est(A) = min(start(A)) earliest start time 
 lst(A) = max(start(A)) latest start time 
 ect(A) = min(end(A)) earliest completion time 
 lct(A) = max(end(A)) latest completion time 

This notation can be extended in a natural way to sets of activities. Let Ω be a set of activities, then: 

 est(Ω) = min{est(A), A∈Ω} 
 lst(Ω) = max{lst(A), A∈Ω} 
 ect(Ω) = min{ect(A), A∈Ω} 
 lct(Ω) = max{lct(A), A∈Ω} 
 p(Ω) = ∑{p(A), A∈Ω} 

During propagation, we will be increasing est and decreasing lct which corresponds to shrinking the time window for 
the activity. For simplicity reasons we use a formula est(A) ← X to describe a requested change of  est(A) which 
actually means est(A) ← max(est(A), X). Similarly lct(A) ← X means lct(A) ← min(lct(A), X). 
 The time windows can be used to deduce a new precedence between activities. In particular, if 
est(A)+p(A)+p(B)>lct(B) then activity A cannot be processed before activity B and hence we can deduce B«A. This 
is called a detectable precedence in (Vilím, 2002). Vice versa, the precedence graph can be used to shrink time 
windows of the activities. In particular, we can compute the earliest completion time of the set of valid activities that 
must be processed before some activity A and the latest start time of the set of valid activities that must be processed 
after A. These two numbers define bounds of the time window for A. Formally: 



 
 

est(A) ← max{est(Ω)+p(Ω) | Ω⊆{X|X«A & Valid(X)=1}} 
lct(A) ← min{lct(Ω)-p(Ω) | Ω⊆{X|A«X & Valid(X)=1}} 

The above two formulas are special cases of the energy precedence constraint (Laborie, 2003) for unary resources. 
Note also that the new bound for est(A) can be computed in O(n.log n) time, where n is the number of activities in 
Θ = {X | X«A & Valid(X)=1}, rather that exploring all subsets Ω⊆Θ. The algorithm is based on the following 
observation: if Ω’ is the set with the maximal est(Ω’)+p(Ω’) then Ω’⊇{X | X∈Θ & est(Ω’)≤est(X)}, otherwise 
adding such X to Ω’ will increase est(Ω’)+p(Ω’). Consequently, it is enough to explore sets ΩX = {Y | Y∈Θ & 
est(X)≤est(Y)} for each X∈Θ which is done by the following algorithm (the new bound is computed in the variable 
end): 

dur ← 0 
end ← inf 
for each Y∈{X | X«A & Valid(X)=1} in non-increasing order of est(Y) do 
  dur ← dur + p(Y) 
  end ← max(end, est(Y)+dur) 

The bound for lct(A) can be computed in a symmetrical way in O(n.log n) time, where n is the number of activities 
in {X | A«X & Valid(X)=1}. 
 We now present two groups of propagation rules working with time windows and a precedence graph. The first 
group of rules realise the energy precedence constraint in an incremental way by reacting to changes in the 
precedence graph. The rules are invoked by making the activity valid /1a/ and by adding a new precedence relation 
/2a/. Because these rules have the same triggers as the rules for the precedence graph, they can be actually combined 
with them. Hence, we name the new rules using the number of the corresponding rule for the precedence graph. 
 The rules shrink the time windows using information about the precedence relations as described above. Only 
valid activities influence time windows of other (non invalid) activities. This corresponds to our requirement that 
optional activities that are not yet known to be valid should not influence other activities but they can be influenced. 
Notice also that if A«C, C«B, and C is valid then it is enough to explore possible increase of est(C) only. The reason 
is that if est(C) is really increased then the rule /3/ is invoked for C (see below) and the change is propagated directly 
to est(B). Similarly, only activities B such that there is no valid activity C in between B and A are explored for 
change of lct(B). 
 When activity A becomes valid and B is after A (A«B) or when A is valid and arc A«B is added then A can 
(newly) participate in sets ΩX that are used to compute est of B (see above). Visibly, only sets containing A are of 
interest because only these sets can lead to change of est(B). The other sets ΩX used to update est(B) have already 
been explored or will be explored when calling the rules for some valid activity in ΩX. Moreover, all valid activities 
C such that C«A are used to compute est(A) so they can complete together no later than in est(A). Hence these 
activities do not influence directly est(B) (they influence it through changes of est(A)). Thus, we need to explore all 
subsets of valid activities X such that X«B and ¬X«A and these subsets contain A. Only these subsets can deduce a 
possible change of est(B). These are exactly the sets used in rules /1a/ and /2a/. A symmetrical analysis can be done 
for activities B before A. Note also that sets Ω’ in rules /1a/ and /2a/ can be explored in the same way as we 
described for the energy precedence constraint above. 
 

 Valid(A) is instantiated  /1a/ 
   if Valid(A)=1 then 
  for each B∈MustBeAfter(A) such that ¬∃C Valid(C)=1 & A«C & C«B do 
        let Ω = {X | X∈MustBeBefore(B) & X∈CanBeAfter(A) & Valid(X)=1} 
        est(B) ← max{est(Ω’∪{A})+p(Ω’)+p(A) | Ω’⊆Ω} 
  for each B∈MustBeBefore(A) such that ¬∃C Valid(C)=1 & B«C & C«A do 
        let Ω = {X | X∈MustBeAfter(B) & X∈CanBeBefore(A) & Valid(X)=1} 
        lct(B) ← min{lct(Ω’∪{A})-p(Ω’)-p(A) | Ω’⊆Ω} 
  exit 



 
 
 

 A«B is added  /2a/ 
  if Valid(A)=1 & Valid(B)≠0 then 
        let Ω = {X | X∈MustBeBefore(B) & X∈CanBeAfter(A) & Valid(X)=1} 
        est(B) ← max{est(Ω’∪{A})+p(Ω’)+p(A) | Ω’⊆Ω} 
   if Valid(B)=1 & Valid(A)≠0 then 
        let Ω = {X | X∈MustBeAfter(A) & X∈CanBeBefore(B) & Valid(X)=1} 
        lct(A) ← min{lct(Ω’∪{B})-p(Ω’)-p(B) | Ω’⊆Ω} 
  exit 

 
The second group of rules is triggered by shrinking the time window (/3/ for increased est and /4/ for decreased lct). 
The rules in this group can deduce that the activity is invalid, if it has an empty time window, and they can deduce a 
new detectable precedence. Moreover, if the activity is valid then the change of its time window is propagated to 
other activities whose relative position to a given activity is known (they are before or after the given activity). If est 
of valid activity A is increased then it may influence est of B such that A«B (note that B is either valid or undecided, 
because invalid activities are disconnected from the graph). This happens if and only if est(B) ≤ est(ΩA)+p(ΩA) (see 
above for the definition of ΩA with respect to B). Notice that rule /3/ computes est(ΩA)+p(ΩA) to update est(B). 
Symmetrically, rule /4/ updates lct(B) for activities B such that B«A, if necessary. Hence, the propagation rules 
incrementally maintain the energy precedence constraint. 
 

est(A) is increased   /3/ 
  if Valid(A)=0 or est(A)+p(A) > lct(A) then 
   Valid(A) ← 0 
   exit 
  else 
   ect(A) ← est(A)+p(A) 
   for each B∈Unknown(A) do 
    if est(A)+p(A)+p(B) > lct(B) then 
     B«A     /* detectable precedence */ 
   if Valid(A)=1 then 
    for each B∈MustBeAfter(A) such that ¬∃C Valid(C)=1 & A«C & C«B do 
     est(B) ← est(A)+p(A)+ ∑{p(X) | X∈MustBeBefore(B) & est(A)≤est(X) & Valid(X)=1} 
 
lct(A) is decreased   /4/ 
  if Valid(A)=0 or est(A)+p(A) > lct(A) then 
   Valid(A) ← 0 
   exit 
  else 
   lst(A) ← lct(A)-p(A) 
   for each B∈Unknown(A) do 
    if est(B)+p(B)+p(A) > lct(A) then 
     A«B     /* detectable precedence */ 
   if Valid(A)=1 then 
    for each B∈MustBeBefore(A) such that ¬∃C Valid(C)=1 & B«C & C«A do 
     lct(B) ← lct(A)-p(A)-∑{p(X) | X∈MustBeAfter(B) & lct(X)≤lct(A) & Valid(X)=1} 

6. CONCLUSIONS 

The paper reports a work in progress on constraint models for the unary resource with precedence relations between 
the activities and time windows for the activities. Optional activities that may or may not be allocated to the resource 
are also assumed. We propose a set of propagation rules that keep a transitive closure of the precedence relations, 
deduce additional precedence constraints based on time windows, and shrink the time windows for the activities. 
These rules are intended to complement the existing filtering algorithms based on edge-finding etc. to further 
improve domain pruning. Our next steps include formal complexity analysis, detail comparison to existing 
propagation rules (edge finder, etc.), implementation of the proposed rules, and testing in real-life environment. 



 
 

ACKNOWLEDGEMENTS 

The research is supported by the Czech Science Foundation under the contract no. 201/04/1102. We would like to 
thank anonymous reviewers for comments on early draft. 

REFERENCES 

Baptiste, P. and Le Pape, C. 1996. Edge-finding constraint propagation algorithms for disjunctive and cumulative 
scheduling, Proceedings of the Fifteenth Workshop of the U.K. Planning Special Interest Group (PLANSIG). 

Baptiste P., Le Pape C., and Nuijten W. 2001. Constraint-Based Scheduling: Applying Constraint Programming to 
Scheduling Problems, Kluwer Academic Publishers. 

Brucker P. 2001. Scheduling Algorithms, Springer Verlag. 

Cesta A. and Stella C. 1997. A Time and Resource Problem for Planning Architectures, Recent Advances in AI 
Planning (ECP’97), LNAI 1348, Springer Verlag, 117-129. 

Dechter R. 2003. Constraint Processing, Morgan Kaufmann. 

Focacci F., Laborie P., and Nuijten W. 2000. Solving Scheduling Problems with Setup Times and Alternative 
Resources, Proceedings of AIPS 2000. 

Garey M. R. and Johnson D. S. 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness, 
W.H.Freeman and Company, San Francisco. 

Laborie P. 2003. Algorithms for propagating resource constraints in AI planning and scheduling: Existing 
approaches and new results, Artificial Intelligence, 143, 151-188. 

Schulte C. 2002. Programming Constraint Services, High-Level Programming of Standard and New Constraint 
Services, Springer Verlag. 

Torres P. and Lopez P. 1999. On Not-First/Not-Last conditions in disjunctive scheduling,  European Journal of 
Operational Research, 127, 332-343. 

Vilím P. 2002. Batch Processing with Sequence Dependent Setup Times: New Results, Proceedings of the 4th 
Workshop of Constraint Programming for Decision and Control, CPDC'02, Gliwice, Poland. 

Vilím P., Barták R., and Čepek O. 2004. Unary Resource Constraint with Optional Activities, Principles and 
Practice of Constraint Programming (CP 2004), LNCS 3258, Springer Verlag, 62-76. 

 


