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Abstract. Formulation of many real-life problems evolves when the problem is 
being solved. For example, a change in the environment might appear after the 
initial problem specification and this change must be reflected in the solution. 
Such changes complicate usage of a traditionally static constraint satisfaction 
technology that requires the problem to be fully specified before the solving 
process starts.  In this paper, we propose a new formal description of changes in 
the problem formulation called a minimal perturbation problem. This 
description focuses on the modification of the solution after a change in the 
problem specification. We also describe a new branch-and-bound like algorithm 
for solving such type of problems. 

Introduction 

Many real-life problems can be naturally stated as constraint satisfaction problems 
(CSP). In practice, the problem formulation is not static but it evolves in time 
[5,6,12,13,17]. In fact, it evolves even during solving the problem. Thus, to further 
spread up applicability of the constraint satisfaction technology in real-life 
applications, it is necessary to cover the dynamics of the real world. In particular, it is 
necessary to handle changes in the problem specification during the solving process. 

The problem changes may result from the changes in the environment like broken 
machines, delayed flights, and other unexpected events. The users may also initiate 
some other changes that might specify new properties of the problem based on a 
(partial) solution found so far. The goal is to find a better solution for the users. 
Naturally, the problem solving process should continue as smoothly as possible after 
any change in the problem formulation. In particular, the solution of the altered 
problem should not differ much from the solution found for the original problem. 

There are several reasons to keep the new solution as close as possible to the 
existing solution. For example, if the solution has already been published like the 
assignment of gates to flights then it would not be convenient to change it frequently 
because it would confuse passengers. Moreover, the changes to the already published 



solution might force other changes because the originally satisfied wishes of the users 
may be violated which raise an avalanche reaction. 

Our work is motivated by a large scale timetabling problem at Purdue University. 
Once timetables are published there, they require many changes based on the 
additional user input. These changes should be reflected in the problem solution with 
a minimal impact on any previously generated solution. Thus, the primary focus of 
our work is to provide a support for making such changes to the generated timetable. 
The basic requirement is to keep the solution as close as possible to the published 
solution of the initial problem provided that the new solution is a solution of the 
altered problem. In terms of constraint satisfaction, it means that the minimal number 
of variable assignments is changed after the problem modification. 

The paper studies the above type of dynamic problems called a minimal 
perturbation problem (MPP). The basic task is to find a solution of the altered 
problem in such a way that this new solution does not differ much from the solution 
of the original problem. In addition to the formal definition of the minimal 
perturbation problem, we also propose a branch-and-bound like algorithm to solve 
such problems. This algorithm can provide an approximate solution for over-
constrained and hard-to-solve problems too. 

The paper is organized as follows. We first give more details about the course 
timetabling problem that makes the main motivation of our research. Then, we survey 
the existing approaches to the minimal perturbation problem and to handling dynamic 
changes in CSP. The main part of the paper is dedicated to a formalization of the 
minimal perturbation problem and to a description of the solving algorithm for such a 
problem. We conclude with an experimental evaluation of the algorithm using 
random placement problems. 

Motivation: A Course Timetabling Problem 

The primary intent behind our work on minimal perturbation problems lies in the need 
to solve such a problem in the context of a real timetabling application for Purdue 
University (USA). The timetabling problem at Purdue University consists of 
allocating approximately 750 courses into 41 large lecture rooms with capacities up to 
474 students. The courses are taught several times a week resulting in about 1,600 
meetings to be scheduled. The space covered by all the meetings fills approximately 
85% of the total available space. 

There are special meeting patterns defined for each course that restrict possible 
time and location placement. For example, the valid combinations of days per course 
are given and all meetings of the same course must be taught at the same classroom 
and at the same time of the day. The classroom allocation must also respect the 
instructional requirements and the preferences of the faculty. Moreover, the 
instructors may have specific time requirements and preferences for each course. 

The students select the courses that they wish to attend. The task is to schedule all 
the courses respecting given constraints and preferences while minimizing the number 
of potential student course conflicts for each of almost 29,000 students. The conflict 
appears when a student wishes to attend different courses that overlap in time. 



The construction of a solution for the above problem was described in [15]. The 
main ideas behind the constraint model are as follows. Each meeting of a course is 
described using two domain variables: a time variable (starting time of the meeting in 
a week) and a classroom variable. The hard constraints ensure that two meetings will 
not be taught at the same classroom at once. The constraints also remove the values 
prohibited by the meeting patterns and by the requirements of instructors and 
faculties. The preferences on time and classroom placement together with the student 
course conflicts are modeled using soft constraints. The cost of a soft constraint 
ensuring that two courses with common students will not overlap is equal to the 
number of common students. The preferences of instructors and faculties are 
expressed using soft unary constraints. 

The variable assignment is constructed using a new limited assignment number 
(LAN) search algorithm [18]. The LAN search algorithm is an incomplete iterative 
search algorithm where the standard backtracking is limited to an incomplete search 
of the linear complexity. The aim is to generate a partial solution with the maximal 
number of assigned variables. The algorithm runs in iterations where each iteration 
step explores some sub-tree of the search tree. The linear complexity is achieved by 
considering a limit on the number of assignments for each variable tried during each 
iteration step. The result of one iteration step is a partial assignment that is used as a 
guide in the next iterations. Special value and variable ordering heuristics have been 
proposed for this purpose. 

It may still happen that the set of hard constraints is over-constrained. The user 
input can be used to resolve this problem by relaxing some constraints. Then, the 
LAN search algorithm can continue in the subsequent iterations with the problem 
definition changed. This approach is similar to the problem considered in this paper – 
we have a partial solution and we want to construct a new solution under the 
redefinition of the problem. However, the approach of the LAN search algorithm does 
not attempt to minimize the number of changes in the subsequent solutions. It rather 
maximizes the number of assigned variables. A solver for minimal perturbation 
problems should do both tasks. 

The solver of the above timetabling problem was implemented using the clpfd 
library of SICStus Prolog [2] with the help of our soft constraints solver [16]. The 
initial implementation started with built-in backtracking of SICStus Prolog. However, 
the experiments with standard backtracking did not lead to a solution after 10 hours of 
CPU time because too many failed computations were repeated exploring the parts of 
the search tree with no solution. The LAN search algorithm was able to substantially 
improve on the initial partial solution. Starting from 33 courses, only one course 
remained unassigned after eight iterations of the LAN search algorithm. Assignment 
of this course was successfully completed with the help of the user. 

The assignment generated by the LAN search algorithm introduces an initial 
solution of the timetabling problem. Once this solution is published, it requires many 
changes based on the additional input. These changes should be involved in the 
problem solution with a minimal impact on any previously generated solution. Note 
also, that it is not possible to limit the changes in the problem definition. Faculties and 
instructors may come with completely new courses to be scheduled and the 
requirements towards the original courses may change substantially. Moreover, some 
requirements or classes may be canceled which can help to find a more acceptable 



solution. On the other hand, the new requirements usually make the problem harder 
since we are constrained in the number of allowed changes with respect to the original 
solution. The original problem, its solution, and the set of requested changes introduce 
the input for the minimal perturbation problem we are going to solve. 

The LAN search algorithm represents the very first step in the direction towards 
solving the minimal perturbation problem because the partial solution generated in 
each iteration step is derived from the previous solution. As our experiments showed, 
the distance of these solutions is mostly acceptable if a small number of changes is 
introduced to the problem. However, the distance significantly enlarges when the 
number of problem changes increases. Other experiments also showed that a more 
informed heuristics may improve the quality of the solution substantially. Thus, the 
LAN Search seems to be a good base for solving the minimal perturbation problem. 

Related Works 

Dynamic problems appear frequently in real-life planning and scheduling applications 
where the task is to “minimally reconfigure schedules in response to a changing 
environment” [7]. Therefore, handling dynamic changes of the problem formulation 
was studied in the constraint community for some time. Dechter and Dechter [4] 
proposed a notion of Dynamic Constraint Satisfaction Problem (DCSP) that is a 
sequence of CSPs, where every CSP is a result of changes in the preceding one. A 
difference between two consecutive CSPs is expressed by a set Cadd of added 
constraints and a set Cdel of constraints deleted from the problem. 

There exist many criteria for evaluating the performance and quality of algorithms 
solving DCSP, like efficiency in finding a new solution or solution stability in the 
face of problem alternation. A minimal perturbation problem can occur here as a 
criterion of similarity or consistency of the solution – the smallest number of values 
should be different between any new and original solution. 

Several algorithms have been proposed to search for a minimum change in the 
solution. For example, Ran, Roos, and Herik [14]  proposed an algorithm for finding a 
near-minimal change solution that is a solution with the minimal or near minimal 
number of modified value assignments. Their algorithm is looking for a new solution 
by changing the assignment of one, two, tree variables, and so on until a feasible 
assignment is found – an approach similar to Limited Discrepancy Search [10]. 

A minimal perturbation problem was described formally by El Sakkout, Richards, 
and Wallace in [6] as a 5-tuple (Θ, α, Cadd, Cdel, δ), where Θ is a CSP, α is a solution 
to Θ, Cadd and Cdel are constraint removal and addition sets, and δ is a function that 
measures the distance between two complete assignments. Their solving method 
combining linear and constraint programming is looking for a complete assignment β 
that minimizes δ(α,β) and that is a solution of the new problem arising from Θ by 
adding the constraints from Cadd and deleting the constraints from Cdel. 

It is interesting to see that there is a lack of works concerned by search for a 
minimum change [14,7]. A commented bibliography from [17] refers only to four 
papers including an earlier version of this paper. 



Looking to existing methods to handle dynamic problems, there are two main 
differences in our approach. First, we allow arbitrary changes of the problem 
formulation including addition and deletion of the variables. Note that variable 
deletion can be modeled in DCSP as a deletion of all the constraints containing the 
variable. Variable addition cannot be modeled directly in DCSP. Second, we are 
working with incomplete assignments to solve over-constrained and hard-to-solve 
problems. Other methods usually relax constraints in advance to solve such problems. 

A Formal Model 

In this section, we present a new formal model of the minimal perturbation problem 
(MPP) that is applicable to over-constrained problems as well as to problems where 
finding a complete solution is hard. Recall that the idea of MPP is to define a solution 
of the altered problem in such a way that this solution is as close as possible to the 
solution of the original problem. We first survey the standard definitions of CSP and 
we introduce a new notion of a maximal consistent assignment. This new notion will 
help us to describe formally an approximate solution of the constraint satisfaction 
problem. In the second part, we define a minimal perturbation problem and a solution 
of the minimal perturbation problem. 

Preliminaries 

A constraint satisfaction problem (CSP) is a triple Θ = (V,D,C), where  

• V = {v1, v2,…, vn} is a finite set of variables,  
• D = {D1, D2,…, Dn} is a set of domains, where Di is a set of possible 

values for the variable vi, 
• C = {c1, c2,…, cm} is a finite set of constraints restricting the values that 

the variables can simultaneously take. 

A solution to the constraint satisfaction problem Θ is a complete assignment of the 
variables from V that satisfies all the constraints. 

For many constraint satisfaction problems it is hard or even impossible to find a 
solution in the above sense. For example, it does not exist any complete assignment 
satisfying all the constraints in over-constrained problems. Therefore other definitions 
of the problem solution, for example Partial Constraint Satisfaction [8], were 
introduced. 

In this paper, we propose a new view of the problem solution based on a new 
notion of a maximal consistent assignment. This approach is strongly motivated by 
the course timetabling problem but we believe that it is generally applicable. The 
basic idea is to assign as many variables as possible while keeping the problem 
consistent. Then, the user may relax some constraints in the problem – typically some 
of the constraints among the non-assigned variables that cause conflicts – so that after 
this change the partial assignment can be extended to other variables. 



Formally, let Θ be a CSP and C be a consistency technique, for example arc 
consistency. We say that the constraint satisfaction problem is C-consistent if the 
consistency technique C deduces no conflict. For example, for arc consistency the 
conflict is indicated by emptying a domain of some variable. We denote C(Θ) the 
result of the consistency test which could be either true, if the problem Θ is C-
consistent, or false otherwise. Let Θ be a CSP and σ be an assignment of some 
variables from Θ. Then, we denote Θσ an application of the assignment σ to the 
problem Θ. Θσ is a problem derived from Θ such that the domains of the variables 
from σ are reduced to a value defined by σ. Finally, we say that an assignment σ is C-
consistent with respect to some consistency technique C if and only if C(Θσ) is true. 
Note that a complete C-consistent assignment is a solution of the problem provided 
that the consistency technique C is able to check satisfaction of the constraints when 
the values of the variables are known. Backtracking-based solving techniques are 
typically extending a partial consistent assignment towards a complete consistent 
assignment where all the variables are assigned. 

As we already mentioned, for some problems there does not exist any complete 
consistent assignment – these problems are called over-constrained. In such a case, 
we propose to look for a solution defined using the notion of a maximal consistent 
assignment. We say that a C-consistent assignment is maximal for a given CSP if 
there is no C-consistent assignment with a larger number of assigned variables. We 
can also define a weaker notion of a so called locally maximal C-consistent 
assignment. A locally maximal C-consistent assignment is a C-consistent assignment 
that cannot be extended to another variable. 

Notice the difference between the above two notions. The maximal C-consistent 
assignment has a global meaning because it is defined using the cardinality of the 
assignment that is the number of assigned variables is maximized there. The locally 
maximal C-consistent assignment is defined using a subset relation – it is not possible 
to extend the locally maximal C-consistent assignment by assigning any additional 
variable without getting inconsistency. Visibly, the maximal C-consistent assignment 
is the largest (using cardinality) locally maximal C-consistent assignment. 

Example (maximal arc-consistent assignments): 
Let V = {a,b,c,d,e} be a set of variables with domains D = {Da={1,2}, 
Db={1,2,3}, Dc={2,3}, Dd={2,3}, De={2,3}} and C = {a≠b, b≠c, c≠d, c≠e, 
d≠e} be a set of constraints. Assume that we use arc consistency as the 
technique for checking consistency of CSP Θ = (V,D,C). Then: 

• σ = {a/1} is a locally maximal arc-consistent assignment for Θ which is 
not a maximal arc-consistent assignment (|σ|=1), 

• γ = {a/2, b/1} is a maximal arc-consistent assignment for Θ  (|γ|=2). 
 
If a constraint satisfaction problem has a solution then any maximal C-consistent 
assignment is the solution provided that the consistency technique C is able to check 
satisfaction of the constraints when the values of the variables are known. If a 
constraint satisfaction problem has no solution – it is an over-constrained problem – 
then some maximal C-consistent assignment still exists. We propose to define the 
solution of the (over-constrained) problem as a maximal C-consistent assignment. 



There is a strong real-life motivation for the above view of the solution for over-
constrained problems. In scheduling and timetabling applications [13,15], the 
maximal C-consistent assignment usually corresponds to allocation of the largest 
number of activities to resources. Such an assignment is more informative than the 
answer “no” that indicates non-existence of a complete assignment of variables 
satisfying the constraints. Moreover, if the problem solution is defined as a maximal 
C-consistent assignment then some solution always exists. In particular, it is not 
necessary to know in advance that the problem is over-constrained. So, a maximal C-
consistent assignment is as a generalization of the traditional solution. It covers a 
solution of CSP as well as a solution of over-constrained CSP. 

Because the maximal C-consistent assignment is the largest among the locally 
maximal C-consistent assignments, a locally maximal C-consistent assignment can be 
seen as an approximate solution. The largest the assignment is, the better approximate 
solution we have. The constraint solver may return an approximate solution when the 
problem is hard-to-solve. In particular, the solver may return the largest locally 
maximal C-consistent that is possible to compute using given resources (e.g., time). 

Notice finally that the solution is parameterized by a consistency technique C 
which gives users the flexibility to define the desired features of the solution. The 
consistency technique may check only validity of the constraints between the assigned 
variables. Then we get the assignment with the largest number of instantiated 
variables. This assignment cannot be extended to another variable without getting a 
constraint violation. If a stronger consistency technique is used, for example arc 
consistency, we may expect a shorter assignment as the solution. However, this 
assignment can be extended to another variable without getting a constraint violation. 
Instead, we get a failure of the arc-consistency test. In some sense, a solution defined 
using a stronger consistency level gives the user some advance for future extensions 
of the assignment. 

A Minimal Perturbation Problem 

Now we can formally define a minimal perturbation problem (MPP) as a triple 
Π = (Θ, α, δ), where: 

•  Θ is a CSP, 
• α is a possibly partial assignment for Θ called an initial assignment, 
• δ is a distance function defining a distance between any two assignments. 

A solution to the minimal perturbation problem Π = (Θ, α, δ) is a solution β for Θ 
such that δ(α,β) is minimal. Recall, that we define the solution as a maximal C-
consistent assignment for some consistency technique C. The idea behind the solution 
of MPP is apparent – the task is to find the largest possible assignment of variables 
for the problem Θ in such a way that it differs minimally from the initial assignment. 

Recall that the minimal perturbation problem should formalize handling changes in 
the problem formulation. So, one may ask where the original problem is in the above 
definition. Because the new solution is compared only to the solution of the original 
problem, it is not necessary to include neither the original problem nor the description 
of the problem change in the definition of MPP. This gives us the freedom to change 



the problem arbitrarily, in particular to add and remove variables and constraints and 
to change variables’ domains. The solution of the original problem can be mapped to 
an initial assignment in Π in the following way. Assume that an assignment σ is a 
solution of the original problem. Then the initial assignment α in the definition of 
MPP is defined in the following way: 

α = {v/h | v/h∈σ & v∈Θ}1. 

Note that α and σ are not necessarily identical because some variables may be 
removed from the problem. Thus, α⊆σ holds. 

The distance function δ in the definition of MPP is specified by the user. For 
purposes of our timetabling problem, we use a specific distance function describing 
the number of differences between two assignments. Let σ and γ be two assignments 
for Θ. Then we define W(σ,γ) as a set of variables v such that the assignment of v in σ 
is different from the assignment of v in γ: 

W(σ,γ) = {v∈Θ | v/h∈σ & v/h’∈γ & h≠h’}. 

We call W(σ,γ) a distance set for σ and γ and the elements of the set are called 
perturbations. The distance function is then defined in the following way: 

δ(σ,γ) = |W(σ,γ)|. 

If a metric is defined on the variables’ domains then it is possible to specify other 
distance functions, for example: 

δ(σ,γ) = maxv {distv (h,h’) | v/h∈σ & v/h’∈γ }, or 
δ(σ,γ) = ∑v{distv (h,h’) | v/h∈σ & v/h’∈γ }, or 
δ(σ,γ) = ( ∑v{distv

2(h,h’) | v/h∈σ & v/h’∈γ })1/2, 

where distv is a distance function (metric) on the domain of the variable v. 
Notice that the above formulation of MPP generalizes the formulation from [6] by 

working with partial assignments rather than with complete assignments and by 
allowing arbitrary changes to the problem. Also, we reformulated the definition from 
[1] to be easier and more general while preserving the original meaning that is 
minimizing the number of changes in the solution after a problem change 

Example: 
Let α={b/3} be an initial assignment for a CSP Θ with variables {b,c,d}, 
domains {Db={1,3}, Dc={1,2,3}, Dd={2,3}}, and constraints {b≠c, c≠d, d≠b}. 
Then the problem Θ has the following solutions (maximal arc-consistent 
assignments): 

•  β1 = {b/1,c/2,d/3} (W(α,β1) = {b}), 
•  β2 = {b/1,c/3,d/2} (W(α,β2) = {b}), 
•  β3 = {b/3,c/1,d/2} (W(α,β3) = {}), 

but only the solution β3 is a solution of MPP Π = (Θ, α, |W|). 

                                                           
1 For simplicity reasons we write v∈Θ which actually means v∈V, where Θ = (V,D,C). 



MPP Solver 

A minimal perturbation problem is a type of optimization problem so it is natural to 
use optimization technology to solve it. In particular, we have modified a branch-and-
bound algorithm for this purpose. 

There is one specialty of MPP going beyond conventional objective functions, in 
particular the maximization of the number of assigned variables. Handling incomplete 
assignments is important for solving over-constrained problems. It also helps to 
produce an approximate solution for hard-to-solve problems. The proposed algorithm 
explores locally maximal consistent assignments and it keeps the largest assignment 
with a minimal distance from the initial assignment (row 4). We have developed a 
concept of variable locking to extend any partial consistent assignment to a locally 
maximal consistent assignment. 

The algorithm is also requested to run in an interactive environment that is the 
solution must be produced in a reasonable time. Often a complete search space is too 
large. Therefore, we combine the optimization branch-and-bound algorithm with 
principles of the LAN search algorithm [18]. In particular, we propose a concept of 
variable expiration that decreases the size of the search space. Consequently, the 
algorithm finds an approximate solution as defined in the previous section. 

 
label(Variables,LockedVariables) 

1 if validate_bound(Variables, Locked Variables) then 
2  V <- select_variable(Variables, LockedVariables) 
3  if V=nil then 
4   save_best_solution(Variables) 
5  else 
6   Value <- nil 
7   while Value <- select_value(V,Value) & non_expired(V) do 
8    label(Variables,LockedVariables) under V=Value 
9   end while 
10   label(Variables,[V|LockedVariables]) 
11  end if 
12 end if 
 end label 
 
 solve(Variables) 
  label(Variables,[]) 
  return saved_best_solution 
 end solve 

Fig. 1.  A labeling procedure for solving the minimal perturbation problem. 

Figure 1 shows a skeleton of the proposed algorithm that is basically a branch-and-
bound algorithm. The algorithm labels variables – assign values to the variables – 
until a solution is found. First, the algorithm checks whether the current bound is 
better than the bound of the so far best assignment, if any (row 1). In case of success, 
the algorithm continues by extending the current partial assignment (rows 2-11). 
Otherwise, search in this branch stops because the current partial assignment cannot 
be extended to the best assignment. In row 2, the algorithm selects a variable V to be 
labeled. If the variable selection fails (row 3), it means there is no variable to be 
assigned. Thus, the current solution is stored as the best one (row 4) and the current 



branch is closed. In case of successful variable selection (rows 5-10), the values in the 
domain of V are tried to be assigned to V (rows 7-8). The algorithm is called 
recursively in an attempt to assign the rest of the variables (row 8). If it is not possible 
to select any value for the variable V then the variable is locked and the algorithm 
continues in labeling the remaining variables (row 10). 

In the next sections, we will give details on variable locking and variable 
expiration, we will describe how to estimate the bound for the optimization algorithm 
(validate_bound), and we will describe the value (select_value) and variable 
(select_variable) ordering heuristics used in our solver. 

Locked and Expired Variables for Partial Assignments 

We have formulated a minimal perturbation problem in such a way that an incomplete 
assignment could be a solution to the problem. Traditionally, the depth-first search 
algorithms backtrack to the last assigned variable when all attempts to assign a value 
to the variable failed. Then they try to find another value for it. Notice that we do not 
get a locally maximal consistent assignment in such a case because it could still be 
possible to extend the partial assignment to another non-assigned variable. Therefore, 
we introduce here the concept of variable locking. The variable whose assignment 
failed is locked and the search algorithm proceeds to the remaining non-assigned 
variables (row 10). The locked variables still participate in constraint propagation so 
the above mechanism extends any partial consistent assignment of variables to locally 
maximal consistent assignment. Notice also that the locking mechanism is local – the 
variable is locked only in a given search sub-tree. As soon as the algorithm backtracks 
above the level, where the variable has been locked, the variable is unlocked and it 
can participate in labeling again. 

Recall that our original motivation was to support interactive changes in the 
problem. It means that the solver returns a solution quickly after any change. 
Exploring a complete search space of the problem could be hard and a time 
consuming task. We propose to explore just a part of the search space by applying 
techniques of LAN Search [18]. The basic idea of LAN (Limited Assignment 
Number) Search is to restrict the number of attempts to assign a value to the variable 
by a so called LAN limit. This number is maintained separately for each variable, 
which differentiates LAN Search from other incomplete tree search techniques like 
Credit Search [3] and Bounded Backtrack Search [9]. 

The LAN principle is realized by using a counter for each variable. The counter is 
initialized by the LAN limit. After each assignment of a value to the variable, this 
counter is decreased. Note that it is possible to assign the same value to the variable in 
different branches of the search tree and each such attempt is reflected in the counter. 
When the counter is zero, the variable reached the allowed number of assignments – 
we say that the variable expired. 

Let us assume that the time complexity of the search algorithm is defined as a 
number of attempts to assign a value to a variable. Because different combinations of 
values should be explored, the worst-case time complexity of the complete search 
algorithms is exponential expressed by the formula domain_sizenumber_of_variables. The 
LAN limit restricts the number of attempts to assign a value to each variable in the 



search tree. Thus, the total number of attempts to assign a value to the variables is 
lan_limit*number_of_variables that is we get a linear worst-case time complexity of 
the LAN search algorithm. Consequently, the LAN search algorithm does not explore 
all possible combinations of values and it produces approximate solutions only. 

Locked and expired variables do not participate in labeling. Thus, these variables 
are skipped when selecting a variable to be labeled (select_variable), even if they 
are not assigned yet. Moreover, the variable may expire when already selected for 
labeling. So, the expiration must be checked during value selection as well (row 7). 

 

Computing Bounds for Optimization 

As we mentioned above a minimal perturbation problem is a sort of constraint 
optimization problems. There are two objective criteria in MPP, namely maximizing 
the number of assigned variables (called length) and minimizing the distance from the 
initial assignment. Our solver uses the distance function defined as a number of 
perturbations so the proposed algorithm is looking for the largest consistent 
assignment and it prefers the assignment with a smaller number of perturbations 
among the assignments of the same length. Thus the objective function can be 
described as a lexicographic ordering [maximize length, minimize perturbations]. 

The core labeling procedure explores locally maximal consistent assignments. 
When it finds such an assignment, it saves it as a bound (row 4) that is used to prune 
the rest of the search tree. The pruning is done by checking whether the current partial 
assignment can be better than the so-far best saved assignment (row 1). To do this 
comparison, we estimate the maximal length of the assignment and the minimal 
number of perturbations. In particular, we need an upper estimate of the maximal 
length and a lower estimate of the number of perturbations. Computing the estimates 
is included in the function validate_bound. 

The estimate of the maximal length is simply the number of all variables minus 
the number of locked variables. Recall, that the algorithm did not succeed to assign a 
value to the locked variable. Thus, this variable will not participate in a locally 
maximal consistent assignment. On the other hand, the expired variables may still be 
part of a locally maximal consistent assignment because the value can be selected for 
them via constraint propagation. 

We estimate the minimal number of perturbations by counting the variables where 
the initial value is outside their current domain. The initial value for the variable is 
taken from the initial assignment. If no such value exists – no value is assigned to the 
variable in the initial assignment – then the variable is always assumed as a 
perturbation. This is realized by using a dummy initial value for v outside the domain 
Dv. Note, that there is a constant number of such variables, say K, in the problem so 
minimizing |W| – the size of the distance set – is equivalent to minimizing |W|+K. 



Value and Variable Ordering Heuristics 

The proposed algorithm can use existing variable ordering heuristics encoded in the 
procedure select_variable. Only the variables that are neither locked nor expired 
and that are non-assigned yet can be selected for labeling. We use a standard first-fail 
principle to select among them – the variable with the smallest domain is selected. 

The value ordering heuristics (select_value) should reflect the goal of search – 
finding an assignment minimizing the number of perturbations. Therefore, for each 
value we compute the number of perturbations that will appear in the solution if the 
value is selected – added perturbations. The values with a smaller number of added 
perturbations are preferred. Computing the number of added perturbations can be 
done by a problem-specific procedure (like in our tests) or by a problem independent 
method like singleton consistency (the value is assigned, propagated through the 
constraints, and the added perturbations are counted). 

Experimental results  

We have implemented the proposed labeling procedure in clpfd library [2] of 
SICStus Prolog version 3.10.1. For comparison, we have also implemented a local 
search procedure in Java, JDK 1.3.1. All presented results were accomplished under 
Linux on one processor of a PC with a Dual Pentium IV Xeon 2.4 GHz processor 
with 1 GB of memory. Algorithms were tested using a benchmark problem, called a 
random placement problem, derived from timetabling problems.  

Random Placement Problems  

The random placement problem (RPP) (see http://www.fi.muni.cz/~hanka/rpp/) seeks 
to place a set of randomly generated rectangles – objects – of different sizes into a 
larger rectangle – placement area – in such a way that no two objects overlap and all 
objects’ borders are parallel to the border of the placement area. In addition, a set of 
allowable placements can be randomly generated for each object. The ratio between 
the size of the placement area and the total area of all objects is denoted as the filled 
area ratio.  

RPP allows us to generate various instances of the problem similar to a trivial 
timetabling problem. The correspondence is as follows: the object corresponds to a 
course to be timetabled – the x-coordinate to its time, the y-coordinate to its 
classroom. For example, a course taking three hours corresponds to an object with 
dimensions 3×1 (the course should be taught in one classroom only).  Each course can 
be placed only in a classroom of sufficient capacity – we can expect that the 
classrooms are ordered increasingly in their size so each object will have a lower 
bound on its y-coordinate. 

RPP is modeled as a CSP. Each object is represented by a pair of variables: 
x-coordinate (VarX) and y-coordinate (VarY) in the placement area. Each variable is 
given a domain according to the size of the placement area and in case of y-coordinate 



also according to its lower bound. The global constraint disjoint2 [2] over 
x-coordinates and y-coordinates ensures that the objects will not overlap. 

Each object is also represented by a redundant time-space variable defined by the 
constraint VarXY #= VarX + VarY * SizeX, where SizeX is the size of the placement 
area in the x-coordinate. Note that there is a one to one mapping between the value of 
VarXY and the pair of values for VarX and VarY defining it (see Figure 2). 

 
2 8 9 10 11 
1 4 5 6 7 VarY 
0 0 1 2 3 

  0 1 2 3 
  VarX 

Fig. 2.  A value of the time-space variable VarXY (in the matrix) is defined uniquely by the 
positions VarX and VarY via the formula VarXY = VarX + VarY * SizeX, where SizeX=4. 

We can post the global constraint all_distinct over the VarXY variables 
which has a similar role like the disjoint2 constraint. Using both constraints 
together brings a higher degree of propagation. However, the main reason for 
introducing the time-space variables is that they will participate in the labeling 
procedure. It has the advantage of exact placement of the object by assigning a value 
to its time-space variable. 

Let us now describe how we can generate the changed problem and how we 
evaluate a solution of the MPP. First, we compute the initial solution using the LAN 
search algorithm [18]. The changed problem differs from the initial problem by input 
perturbations. An input perturbation means that both x-coordinate and y-coordinate of 
a rectangle must differ from the initial values, i.e. VarX#\=InitialX, VarY#\=InitialY. 
For a single initial problem and for a given number of input perturbations, we can 
randomly generate various changed problems. In particular, for a given number of 
input perturbations, we randomly select a set of objects which should have input 
perturbations. The solution to MPP can be evaluated by the number of additional 
perturbations. They are given by subtraction of the final number of perturbations and 
the number of input perturbations. 

Experiments 

We have completed a number of small experiments on RPPs during implementation 
of the algorithm. RPPs were very helpful as they are simple enough to help in 
understanding behavior of the algorithm. On the other hand, one can generate much 
larger RPPs, which allow performing more complex experiments. 

The first set of experiments shows performance of the algorithm for different sizes 
of the random placement problem. We have generated three data sets with 100, 200, 
and 300 objects, respectively. The objects were generated randomly in the sizes 2×1 
to 6×1. Each object has assigned a random lower bound for the y-coordinate which 
was in average 35% of the y-size of the placement area. These parameters correspond 
to a real-life course timetabling problem that we are going to solve in the future. Each 
data set contained fifty problems and the filled area ratio was 80%. The initial 
solution was computed by the LAN search algorithm.  Then we added changes to the 



solution by forbidding the current position of randomly selected objects. Recall that 
these changes are called input perturbations. The number of input perturbations was 
chosen in the range from 0 to 25% of the number of objects. For each problem and for 
each considered number of the input perturbations, five minimal perturbation 
problems were generated. During the experiments, the algorithm used a LAN limit 
equal to 5. We also performed experiments with the limit 10 and 100 but no 
improvement has been achieved. 

Figure 3 shows the relative number of additional perturbations, the relative number 
of assigned variables, and the CPU time as a function of the number of input 
perturbations. We use relative numbers of perturbations with respect to the number of 
objects to compare the results for data sets with a different number of objects. 

The top left graph of Figure 3 shows an increase of the number of additional 
perturbations with the increasing number of input perturbations. This behavior is 
natural – more changes in the problem definition evoke more additional changes in 
the solution. We can also see that the number of additional perturbations decreases 
with the size of the problem which may seem surprising at first. However, recall that 
the size of the objects remains the same while the size of the area is increasing with 
the larger number of objects (to keep the filled area ratio 80%). Note that it is easier to 
place 80 objects into an area of size 100 than to place 8 objects into an area of size 10 
which explains the above behavior. 
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Fig. 3. Performance and quality of the solution for the proposed algorithm on random 
placement problems with 100 objects (?), 200 objects (¦ ), and 300 objects (r). 



The top right graph of Figure 3 shows a number of assigned variables which is 
rather large. Actually, all variables were assigned in most of the experiments which is 
a very promising result. The reason could be that the filled area ratio is 80% which 
makes the problems under-constrained. Due to time reasons we were not able to 
perform experiments for over-constrained problems yet. 

The bottom graph of Figure 3 shows a non-surprising increase of the running time 
with larger problems. The increase is non-linear which may seem contradicting with 
the linear search space explored by the algorithm. However, it is necessary to include 
the complexity of value ordering heuristics in the total complexity. The complexity of 
heuristics depends on the number of objects as well as on the number of positions 
where the objects can be placed. 

 
In the second experiment, we have compared the proposed extension of the branch-
and-bound algorithm with a local search algorithm. This local search algorithm is an 
extended version of the algorithm presented at [13]. It is heuristically oriented to 
solving RPPs and it was implemented in Java. As before, we used fifty initial 
problems and five MPPs per an initial problem. We compared the algorithms on the 
problems consisting of 100 objects and we did the experiments for input perturbations 
from 0 to 100 with the step 4. Thus 0 to 100% relative input perturbations are 
covered.  
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Fig. 4. Comparison of the proposed branch-and-bound algorithm (¦ ) with a problem specific 
local-search solver (?). 



Figure 4 shows the number of additional perturbations, the number of assigned 
variables, and the CPU time as a function of the number of input perturbations for 
both algorithms. We expect the comparison to be the most meaningful for a smaller 
number of input perturbations (up to about 25%) because this is the area of the highest 
interest for MPPs. Here the general branch-and-bound algorithm seems to be 
comparable to the specific problem solver in terms of the solution quality. Still, the 
dedicated local search algorithm is much faster there. 

Conclusions 

Including dynamic features to solvers is a recent trend in planning, scheduling, and 
timetabling. In this paper, we addressed one of these features, namely finding a 
solution of changed problem that does not differ much from the solution of the 
original problem – a so called minimal perturbation problem. We proposed a new 
view of the minimal perturbation problem in the context of constraint satisfaction 
motivated by a real-life application of university course timetabling. This new 
framework supports incomplete assignments as a problem solution which is useful to 
model over-constrained problems as well as hard-to-solve problems. Moreover, this 
new formulation allows looser changes of the problem formulation like addition and 
retraction of constraints and variables as well as changes in the variables’ domains. 
We also proposed a new labeling algorithm to solve minimal perturbation problems. 
This incomplete algorithm has a linear time complexity and it is capable to solve 
over-constrained and hard problems by looking for locally maximal consistent 
assignments. The experiments using random placement problems showed that the 
algorithm is able to find optimal or close to optimal solutions. Next work will 
concentrate on testing the algorithm in a real-life timetabling application and on 
improving its real-time performance. We will also explore the possibility to extend 
the tested local search algorithm for general minimal perturbation problems. 
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