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problémů z reálného světa, nicméně plánování je samo o sobě v obecném případě velmi 
těžké a zavedení času a zdrojů plánování dělá ještě těžším. V této práci prozkoumáme 
z teoretického hlediska aspekty plánování, uvažování o čase a uvažování o zdrojích. Na 
základě tohoto průzkumu navrhneme vlastní suboptimální a doménově nezávislý plá-
novací systém zaměřený na plánování, kde čas hraje hlavní roli, a zdroje jsou omezené. 
Navržený systém otestujeme na plánovacích problémech s časem a zdroji 
z mezinárodní plánovací soutěže roku 2008 a výsledky navrženého plánovacího systé-
mu porovnáme s výsledky plánovacích systémů, které se účastnili této soutěže. 
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Abstract: Automated planning plays an important role in many fields of human interest, 
where complex and changing tasks involve demanding efficiency and error-avoidance 
requirements. Research in planning is also motivated by capturing the computational 
aspects of Artificial Intelligence, where planning, being a reasoning side of acting, is 
one of the key elements. Introduction of time and resources into planning is an impor-
tant step towards modelling problems from the real world, however planning is 
generally hard and introduction of time and resources makes it even harder. In this the-
sis we explore theoretical aspects of planning, temporal reasoning and resource 
reasoning. Based on these studies we develop our own suboptimal domain-independent 
planning system that focuses on planning, where time plays a major role and resources 
are constrained. We test the developed planning system on the planning problems with 
time and resources from the International Planning Competition 2008 and compare our 
results with the competition participants. 
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1 Introduction 

Planning is an abstract, explicit deliberation process that chooses and organizes ac-
tions by anticipating their expected outcomes. Since a human could recognize a concept 
of flowing time, planning has been one of the key mental processes one performs. We 
could hardly find in today society a field of interest, where planning would not play a 
significant role. Also our daily lives involve planning in many forms, from short-term 
planning problems like “how to get to work” to long-term such as “how to earn a lot of 
money”. Some of such problems we learn to solve well and apply what we have learned 
when we encounter them again, some of them are so large, that we hierarchically cas-
cade them to smaller problems. Some are so full of uncertainty, that we simply do not 
solve them until they become more certain. Some are so complicated, that we cannot 
solve them at all. 

One of the outcomes of the technological revolution in the previous century was the 
availability of raw deterministic processing power, which was the key element initiat-
ing the research of Artificial Intelligence dating back to 1956. In the following decades 
after several unfulfilled optimistic predictions of general-purpose AI, the AI research 
divided into a number of fields. The original idea of “general AI” was partly abandoned 
on behalf of forming research in fields of AI subproblems, which had more direct real 
word application and therefore earned more attention and support; initially they were 
referred to as “applied AI”.  

Automated planning is one of the research fields of AI and can be described as a 
synthetic task involving formulations of course of actions needed to achieve some ob-
jectives while satisfying some rules and optimizing some objective function. Compared 
to human cognitive planning process, we can find many similarities in both terminology 
and basic algorithmic ideas [1]. The first difference comes in the definition of language 
used for description of a planning problem. While human can abstract problem from 
spoken “meta language”, for automated planning we need a precisely specified formal 
language. Such language then defines the types of planning problems we can describe. 
One of the oldest formal languages for planning is STRIPS [2], which up today forms 
the base for many other planning languages. Today PDDL [3] is a widely used lan-
guage for planning in the AI planning community. 

Once we have a language, we need to describe “the world” of the planning problem 
by introducing objects of the world and mechanics among them. Because some plan-
ning problems can naturally share same or similar description of the world, it is useful 
to distinguish between the world description and the problem itself. In the following 
text we will use the term “problem domain” as a description of the world and term 
“problem instance” as a description of specific planning problem in some problem do-
main. As a simple example, we can imagine a problem domain that consists of objects 
location and car, predicates reachable(location, location, length), at(car, location) and 
action move(car, location, location). A problem instance for such domain could be a set 
of all locations in Prague, where predicate reachable would define which locations are 
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connected by roads of certain length and predicate at would define the initial and the 
goal locations of the cars. If we wrote a planner for such a domain, which in this case 
could be a simple shortest-path graph algorithm, we would be able to switch the prob-
lem instance from Prague to London, use different cars, and our planner would be able 
to solve such problem as well. However if we alter the problem domain, our planner 
will not be able to solve any problem instance. Such planner would be called domain-
dependent. The planner that can solve problem instances of any domain defined in a 
formal language can be called domain-independent. Of course the real universality of a 
domain-independent planner is still constrained by the expressiveness of chosen formal 
language. One can predict that writing a domain-independent planner is more compli-
cated than staying domain-dependent. It is, additionally independency can come with 
sacrifices in solution quality, additional runtime requirements and even with worse 
computational complexity so we can end up as Jack of all trades, master of none. 
Therefore, what motivation do we have for domain-independent planners? There are 
two main reasons. Theoretical, being able to solve planning problems for any domain 
from certain formal language eventually leads to creating one of the most essentials 
blocks of “general AI”, once the expressiveness of underlying language, hardware 
technology and computer science reach certain point. And practical, in many cases the 
performance of a domain-independent planner can be sufficient compared to the state-
of-the-art domain-dependent approach and even if it is not, it is generally much easier 
to adapt a domain-independent planner for certain domain, therefore increasing its per-
formance, than to adapt a domain-dependent planner to a significantly different domain. 

Our goal in this thesis is to look into various ways of describing, representing and 
solving planning problems with time and resource constraints, and propose, implement 
and benchmark our own prototype of planning system while staying as domain-
independent as possible. 

In the following chapter we look into ways how a planning problem can be repre-
sented, how we can search for a solution of the planning problem, and how we can 
further explore the structure of the planning problem. In the third chapter we describe 
how the structure of time can be introduced into planning and we further concentrate on 
quantitative notion of time and the simple temporal problem. In the fourth chapter we 
introduce the concept of resources, present categories of resources, and discuss how the 
resources are used in scheduling and planning. In the fifth chapter we describe three 
approaches to the integration of planning and scheduling. In the sixth chapter we intro-
duce structures and algorithms used in our system. In the seventh chapter we describe 
the planning problems we solve and our evaluation methodology for the results, which 
we consequently present and discuss. We summarize our approach in the final chapter 
and we propose the directions for further development. 
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2 Planning 

Real world planning problems usually differ from each other significantly, various 
approaches were taken dealing with e.g.: path and motion planning, perception plan-
ning, navigation planning, manipulation planning, communication planning or different 
branches of social and economic planning. These approaches often rely on their own 
domain representations and problem specific techniques limiting its reusability and 
transferability to other branches of planning problems. Finding a common ground for 
representing planning problems has always been a challenge as the representation of 
various real world features and emphasis on different aspects of problem are required.  

For describing the main elements of a planning problem while leaving aside the al-
gorithmic approaches it is useful to create a theoretical concept of a dynamic system. 
For this purpose we use a model of discrete-event system, which is also common in 
other areas of research, e.g. communications, industrial engineering, control theory, 
operational research and many branches of computer science. 

Formally, a discrete-event system is a quadruple ∑ = (S, A, E, ߛ), where: 

 S = {s1, s2, ...} is a finite or recursively enumerable set of states; 

 A = {a1, a2, ...} is a finite or recursively enumerable set of actions; 

 E = {e1, e2, ...} is a finite or recursively enumerable set of events; and 

 ߛ: S × A × E → 2S is a state transition function. 

The discrete-event system can be represented as a directed graph, where nodes rep-
resent states and an arc between two nodes v1 and v2 exists iff v2 ߛ  א(v1, a, e) for some 
a א A and e א E. It is also useful to introduce a neutral action no-action and a neutral 
event no-event allowing us to consider state transitions caused solely by an event or an 
action. While both events and actions can cause a change of the state, we use the ac-
tions to describe the changes that we can control and the events to describe the 
uncontrollable changes. The purpose of planning is to find which actions to apply to 
which states to achieve some objective when starting from some given situation. Using 
our simple domain from introduction, we can imagine an event to be a change, which 
e.g. arbitrary disables some road. 

For purpose of this thesis we will additionally constrain this model by several as-
sumptions: 

 We assume we have a complete knowledge of the system. This assumption can 
also be referred to as a fully observable system; contrary without this assump-
tion, we would be referring to planning with uncertainty. 
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 We assume that the set of events is empty. The system can be called static; ad-
ditionally we are not concerned with any changes that may occur while we are 
planning. In other words we are planning offline. 

 We assume the system to be deterministic by considering the transition func-
tion to always bring a deterministic system to a single other state. 

While our model of the discrete-event system might seem sufficient for the descrip-
tion of a planning problem, it is not feasible, except for the most trivial cases, to 
represent all states explicitly due to combinatorial explosion of enumeration. Consider-
ing our toy-example, with 30 cars and 100 locations our graph would have 1060 nodes. 
Hence it is essential to work with a compact implicit representation, which would de-
scribe useful subsets of state space and allow an effective searching approach. 

2.1 Principal representations for planning 

In planning we can generally find three principal concepts of representation: set-
theoretic, classical and state-variable [4]. These representations are equal in its expres-
sive power and transferable among each other. We can usually refer to them as 
“classical representations”. While techniques discussed in this thesis are building upon 
more compound representations, we will use classical representations as a reference 
point. 

 In a set-theoretic representation, each state of the world is a set of propositions, 
and each action is a syntactic expression specifying which propositions belong 
to the state in order for the action to be applicable and which propositions the 
action will add or remove in order to make a new state of the world. We can 
represent actions as a triple (preconditions, negative effects, positive effects). 

 In a classical representation, the states and actions are like the ones described 
for set-theoretical representations except that first-order literals and logical 
connectives are used instead of propositions. 

 In a state-variable representation, each state is represented by a tuple of values 
of n state variables {x1, x2, ..., xn}, and each action is represented by a partial 
function that maps this tuple into some other tuple of values of the n state vari-
ables. 

Using our toy-example, we can create representations for the following problem. 
We assume we have cars car1, car2 and locations loc1, loc2, initially car1 is at loc1 and 
car2 is at loc2. Our objective is to swap the locations of the cars. Figure 2.1 depicts the 
formulation of problem in the three representations. 
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  set-theoretic representation 
    propositions: 
      {car1-loc1, car1-loc2, car2-loc1, car2-loc2} 
    actions: 
      move-car1-loc1-loc2({car1-loc1}, {car1-loc1}, {car1-loc2}) 
      move-car1-loc2-loc1({car1-loc2}, {car1-loc2}, {car1-loc1}) 
      move-car2-loc1-loc2({car2-loc1}, {car2-loc1}, {car2-loc2}) 
      move-car2-loc2-loc1({car2-loc2}, {car2-loc2}, {car2-loc1}) 
    initial state: {car1-loc1, car2-loc2} 
    goal state: {car1-loc2, car2-loc1} 
 
  classical representation 
    constants: {car1, car2, loc1, loc2} 
    predicates: {car(x), loc(x), at(x, y)} 
    operators: 
      move(x, y, z): 
        preconditions: car(x), loc(y), loc(z), at(x, y) 
        effects: not at(x, y), at(x, z) 
    initial state: 
      {car(car1), car(car2), loc(loc1), loc(loc2),  
       at(car1, loc1), at(car2, loc2)} 
    goal state: 
      {at(car1, loc2), at(car2, loc1)} 
 
  state-variable representation 
    objects: car א {car1, car2}, loc א {loc1, loc2} 
    state variables: at(car, loc): states × car → loc 
    operators:  
      move(x א car, y א loc, z א loc): 
        preconditions: at(x) = y 
        effects: at(x) = z 
    initial state: {at(car1) = loc1, at(car2) = loc2} 
    goal state: {at(car1) = loc2, at(car2) = loc1} 
 

Figure 2.1: Example of different representations of the toy-problem with two cars and two locations. 

Classical and state-variable representations are more expressive than the set-
theoretic representation in sense of amount of information they can encode, although all 
three representations can still encode the same set of planning domains. While in the 
set-theoretic representation we are grounding all elements, in classical and state-
variable representations we gain additional information by e.g. encoding position of a 
car as a single valued function through state-variable, which is more natural in sense 
that one car cannot occur at several locations at once. If we restrict all atoms and state-
variables to be ground, these representations would be essentially equivalent allowing 
translation to each other with at most linear increase in size [4]. 
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2.2 Search techniques for planning 

Among the first decisions that come in question when we think about searching for 
a plan is the specification of the search space. There are generally two concepts of 
search space; either we can search through the space of states of the system or we can 
search through the space of partially specified plans. While in the space of states the 
edges represent the transitions between the states caused by an action or an event, in 
plan space the edges represent the refinement operations intended to further complete a 
partial plan. In theory, planning in plan space can be seen as a generalization of state 
space planning. One can imagine a choice of the applicable action being a refinement of 
a plan. 

Planning is generally hard, PSPACE-complete for a restricted case, where actions 
are limited to a single non-negated precondition [5]. Consequently searching for opti-
mal plans is much harder than searching for feasible plans; therefore many today 
competitive domain-independent planning systems are incomplete incorporating some 
form of non-admissible heuristic. In practice we often do not need optimal plans, which 
are sometimes too hard to find, and we resort to plans which are good in sense of some 
measurable quality. 

How do we measure the quality of a plan? In the beginning of automated planning 
research there was actually a single criterion, the existence of a plan, therefore finding 
any plan was sufficient and formulated planning problems reflected it. Later, with the 
increased spectrum of problems, planning community became interested not only in 
finding plans, but also in finding particularly good plans. An obvious measure for qual-
ity can be the length of a plan, in other words, the number of actions used to reach a 
goal state from the initial state. Alternatively we can associate a cost with each action 
and represent plan quality as a sum of all action costs in a plan. Once we extend plan-
ning with time, we can use the total time of a plan as the measure of quality. Extending 
planning with resources brings another way how to measure quality through objective 
function on evolution of resource usage. We can extend a planning problem with some 
form of preferences or soft constraints and measure the number of their possibly 
weighted violations. In this thesis we usually stick to a single criterion, although in 
practical application it is useful to combine several measurements methods, e.g. to 
minimise the total-time and soft-constraint violations, especially in cases when a human 
planner is a part of the planning process. 

In this section we start by introducing STRIPS algorithm as a principal representa-
tive of the state space planning. Consequently we describe planning in the plan space, 
introduce the concepts of two useful structures, a planning graph and a domain transi-
tion graph, and finally we describe the concept of landmarks. 
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2.2.1 STRIPS algorithm 

Searching for a plan in state space we can generally think of two concepts, we can 
either search for a way from the initial state to the goal state or from the goal state to 
the initial state. Those concepts are usually referred to as “forward search” and “back-
ward search”. The strategy of choosing the next state in a search is the defining point of 
a state space planning system. 

 The pioneering planner in state space planning was Stanford Research Institute 
Problem Solver, shortly STRIPS, developed in 1971 [2]. Its initial practical purpose 
was a control of a small robot, planning and performing simple tasks. Due to limited 
processing power at that time it was essential to significantly prune the state space; 
therefore the original algorithm was incomplete. STRIPS algorithm can be conceptually 
described as follows: 

1. Extract the differences between the current state and the goal state. 

2. Identify relevant operators for reducing these differences. 

3. Solve the subproblem of producing a state where such a relevant operator 
can be applied. 

4. Repeat until all goals are satisfied. 

 The heuristic choice of relevant operator in step 2 is based on difference measure-
ment, which consists of the number of remaining goals and the number and types of 
remaining predicates in the remaining goals. Step 3, in other words, represents solving 
all preconditions of operator chosen at step 2. One of well known downsides of the 
STRIPS algorithm is Sussman anomaly, which occurs, when an operator solving a pre-
condition deletes one of already achieved goals. STRIPS algorithm and its different 
extensions are up today still heavily used in practice, e.g. in computer games. Later 
developed formal language of inputs for STRIPS planner is the base for most languages 
used today for expressing planning problems. 

2.2.2 Plan space planning 

Plan space planning differs from state space planning not only in the search space 
but also in the description of a solution plan, which is no longer a sequence of actions 
but a set of partially instantiated operators together with ordering constraints and bind-
ing constraints. Formally, a partial plan is a quadruple π = (A, ط, B, L), where: 

 A = {a1, a2, ..., ak} is a set of partially instantiated planning operators. 

 ط  is a set of ordering constraints on A of the form (ai  ط aj) 

 B is a set of binding constraints on the variables of actions in A of the form x = 
y, x ≠ y, or x א Dx, where Dx is a subset of the domain of x. 
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 L is a set of causal links of the form ܽۃ  

՜ ܽۄ, such that ai and aj are actions in 

A, the constraint (ai ط aj) is in ط, proposition p is an effect of ai and precondi-
tion of aj, and the binding constraints for variables of ai and aj appearing in p 
are in B. 

The search space is an implicit directed graph, whose nodes are partial plans and 
whose edges correspond to refinement operations. A refinement operation consists of 
one or more additions of following into a partial plan: an action into A, an ordering 
constraint into ط, a binding constraint into B or a causal link into L. 

The addition of an action into a partial plan performs a refinement by supporting 
one of the subgoals, which can be either a plan goal or a condition of another previ-
ously added action. Because initial and goal states are usually represented as a set of 
actions with no preconditions, respectively no effects, we consider the reason for an 
addition of action being always support for the precondition of another action. Added 
action also needs to happen before the action, whose condition it supports, therefore we 
need to add an ordering constraint between these two actions. Consequently we would 
like to ensure, that another action does not delete the supported proposition after it 
gained its support but before it was needed. Therefore we are adding a causal link be-
tween the two actions marking it with the proposition and we determine if the added 
action does threaten any other already existing causal links, which would have to be 
later solved as a flaw of the partial plan. Finally adding the binding constraints ensures 
that both the supported and the supporting action are concerned with the same atomic 
proposition. 

Search in plan space planning can be conceptually described as a loop over solving 
flaws in a partial plan, where a flaw can be an unsupported precondition of an action, or 
an action threatening some causal link. A threat to an existing causal link can be re-
solved by either binding threatening action before or after both actions forming the 
causal link or adding binding constraints to the variables of the threatening action such 
that the conflict proposition of the causal link is not threatened. The search strategy in 
plan space planning is determined by decision points, which are the choice of the flaw 
to solve, the choice of supporting action for certain precondition and the choice of a 
way of resolving a threatened causal link. 

Once all flaws of a partial plan are resolved and ط and B are consistent, we have 
found a set of plans, from which we can extract the final ground plan. However the 
extraction itself can be another search problem, according to some measurement of plan 
quality. 

Comparing state space planning and plan space planning, we can find the following 
main differences: 

 Nodes in plan space search are generally more computationally demanding. 
While in state space we compute just the transition function, the refinement op-



14 
 

erations in plan space may involve expensive consistency checking and threat 
management. 

 In state space planning the solution plan is a sequence of actions, while in plan 
space planning the structure of the solution plan is a set of partially ordered ac-
tions. Therefore plan space planning can be extended with the concept of time 
and concurrent actions more naturally. 

 In plan space the notion of explicit states during search is lost; therefore it is 
generally harder to benefit from domain-specific heuristic and control knowl-
edge. 

2.2.3 Planning graph 

The solution plans in state space planning consisted of a sequence of actions; in 
plan space planning the solution plans represented a set of partially ordered actions. 
Planning graph techniques take the middle ground with a plan being represented by a 
sequence of sets of actions. While plan space planning maintains a least commitment 
approach with partially instantiated and partially ordered actions, planning graph ap-
proaches make strong commitments with fully instantiated and positioned actions. The 
approaches rely on two powerful and interrelated ideas: reachability analysis, which 
addresses the issue of whatever a state is reachable from some given state, and disjunc-
tive refinement, which addresses the flaws through the disjunction of resolvers. 

 In state space we can define reachability of state s1 from state s0 in k steps by creat-
ing a reachability tree of depth k, whose nodes are the states and edges correspond to 
the applicable actions. Such tree then also solves any planning problem from state s0 
with the number of actions less or equal to k.  Since some nodes can be reached by dif-
ferent paths, the reachability tree can be factorized into a graph. However even such a 
reachability graph grows quickly with increasing k and eventually covers all reachable 
states in the state space. 

The major contribution of the planning graph technique is the relaxation of reach-
ability. While the reachability graph gives a sufficient condition, the planning graph 
gives only necessary condition for reachability. However the planning graph is of poly-
nomial size and can be computed in polynomial time in the size of input. 

The leading idea of the planning graph structure is to consider every level of the 
hypothetical reachability tree not as specific states but as a union of propositions in 
those states. While in the reachability graph a node is associated with the propositions 
that necessarily hold for that node, in the planning graph a node contains propositions 
that possibly hold. However the union of sets of propositions for several states does not 
preserve consistency, e.g. using our toy-example, we could have a car at several loca-
tions at once. We can solve this by keeping a track of incompatible pairs of 
propositions. 
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The planning graph is a directed layered graph, where arcs exist only from one 
layer to the next. Nodes in level 0 represent propositions of the initial state s0 of a plan-
ning problem. Every further level contains two layers, an action layer and a proposition 
layer. The action layer contains a set of actions whose preconditions are nodes in the 
previous proposition layer. The proposition layer contains a set of positive effects of 
actions from the previous layer. An action node in an action layer is connected with 
incoming arcs from its preconditions in the previous layer and with outgoing arcs to its 
positive and negative effects in the next layer. Since our goal is to represent multiple 
states in state space, we consider negative effects of actions to be non-deleting; addi-
tionally we need to carry persistent propositions between the proposition layers, 
therefore we enrich a set of actions by no-op actions, where for each proposition a no-
op action’s single precondition and positive effect is the proposition.  

For defining the incompatibility of propositions and actions, we start with the defi-
nition of dependency between actions. We say that two actions a and b are depend iff 
either of the following holds: 

 effects-(a) ת [precond(b)  effects+(b)] ≠  or 

 effects-(b) ת [precond(a)  effects+(a)] ≠ . 

Where effects- and effects+ denote negative and positive effects of an action. Con-
sequently two actions are independent if they are not dependent and a set of actions is 
independent if it is pair-wise independent. 

The incompatibility relation between actions and between propositions in a plan-
ning graph is defined as follows: 

 Two actions a and b in an action layer are incompatible if either a and b are de-
pendent or if a precondition of a is incompatible with a precondition of b. 

 Two propositions p and q in the proposition layer are incompatible, if every ac-
tion in the previous action layer that has p as a positive effect (including no-op 
actions) is incompatible with every action that produces q, and there is no ac-
tion that produces both p and q. 

While dependency of actions is a static property of the problem domain, incompati-
bility relations take into account additional constraints of the problem. Furthermore 
propositions and actions in a planning graph monotonically increase from one level to 
the next, while incompatible pairs monotonically decrease. These monotonic properties 
are essential for the complexity and termination of the planning graph techniques, 
which is further discussed e.g. in [4]. 

A layered plan is a sequence of sets of actions, which is a solution of planning prob-
lem iff each set of actions is independent and sequentially applicable to the initial state. 
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Planning graph was introduced as a part of GraphPlan planner [6], which performed 
significantly better than previous state space planners. Additionally the richness of the 
planning graph structure opened a way to broad development of extensions and re-
search, and consequently brought significant improvement of performance, in sense of 
scalability and efficiency, in state space planning. 

2.2.4 Domain transition graph 

The concept of domain transition graph is strongly related to the state variable rep-
resentation. The domain of a single state variable is a set of values, which the state 
variable can attain. Informally, the domain transition graph for certain state variable is a 
directed graph, where nodes represent values from the state variable domain and arcs 
represent actions, whose effects contain assignment of value for the state variable. The 
concept of domain transition graphs was firstly introduced in [7] as a part of SAS+ rep-
resentation; recently it was extended with conditional effects and axioms in [8] as a part 
of Multi-valued Planning Task representation used in Fast Downward planner.  

The benefit of state variable representation is an aggregation of mutually exclusive, 
shortly mutex, propositions into state variables. This aggregation can be done initially 
in the definition of the planning domain. However sometimes it may not be an easy and 
natural task for a human planner to explore and formulate state variables in a range of 
its possible coverage. The reason is that the state variables may no longer be interpreted 
as a simple description of some meaningful real world feature. Therefore generating 
state variables automatically is desirable. 

A technique for generation of state variable developed in [8] relies on the concept 
of invariant synthesis. Generally, invariant in a planning problem is a property of the 
world state, which is satisfied in all world states reachable from the initial state. Invari-
ants in planning have been studied in different contexts, usually in SAT-based 
planning, e.g. in [9]. For the purpose of state variables generation we are especially 
interested in mutex invariant, which holds the information, that a certain set of proposi-
tions is pairwise mutually exclusive and therefore can be encoded as a single state 
variable. However we have to deal with two additional problems. Invariants discovery 
and proving is generally hard; in fact it can be as hard as planning itself. Consequently 
once we discover mutex invariants defining sets of mutex propositions, these sets will 
share propositions, and since our goal is to generate as few state variables as possible, 
while covering all propositions, we have obtained a set covering problem, which is in 
this case NP-complete.  

Multiple approaches to mutex invariant synthesis have been introduced in literature, 
e.g. in [9] and [10]. Although the discovery is generally hard, a slightly relaxed ap-
proach of form “guess and check” is often reasonably productive. Similarly a simple 
greedy algorithm produces suitable coverage of the mutex sets for purpose of state vari-
ables. Afterall, we cannot spend all the time creating optimal representation and leave 
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no time to planning itself. Due to space limitation we do not describe specific ap-
proaches to invariant synthesis in detail. 

For illustration we can extend our toy-example with passengers who can either walk 
or drive between locations. While driving requires a road, walking does not; however 
walking takes longer, hence walking between certain locations is not an option. Assum-
ing we have three locations, one car and one passenger, possible domain transition 
graphs are depicted in Figure 2.2. 

 

Figure 2.2: Domain transitions graphs for a problem with three locations, one car and one passenger. 

2.2.5 Landmarks 

Landmarks are facts that must be true at some point in every valid solution of a 
planning problem. Since the validity of a solution requires all goals to be satisfied, we 
can see the goals as trivial landmarks. One motivation for landmarks can be decomposi-
tion of a possibly large planning problem into smaller subproblems, which would 
exponentially speed up the planning process. However such decomposition may not 
always be possible or effective due to high interdependency among the landmarks. 
Planning system SGPlan takes this lead and its version SGPlan6 won the recent IPC in 
deterministic temporal satisfaction track [11]. 

As usual in automated planning, finding all landmarks can be hard. Additionally the 
contribution of landmarks itself may not be as large, unless we can find some orderings 
between them.  The goal ordering is one of the longstanding issues in automated plan-
ning. Among the recent contributions to a problem of goal ordering we find [12], where 
authors introduce concepts of several orderings, which were later extended for land-
marks in [13]. Another extension of landmarks, proposed in [14], was used in heuristic 
planning system LAMA, which won the recent IPC in deterministic sequential satisfac-
tion track [11]. 
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Some landmarks can be found easily, goals are essentially landmarks. In case we 
are working with domain transition graphs, we can efficiently extract additional land-
marks from the graph; assuming there is an initial node and a goal node in the graph 
then a landmark is a node, which is contained in every path from the initial node to the 
goal node. One of general techniques for landmark extraction is backchaining. We de-
scribe the backchaining with using relaxed planning graph as proposed in [13].  

The planning graph is built as described earlier; the relaxation consists of ignoring 
all negative effects of actions. Hence there are no incompatibility relations in the graph, 
which now encodes an overapproximation of reachability. Using backchaining, we start 
with some landmark (may be a goal) and search through the preconditions of the “earli-
est” actions that achieve the landmark; any precondition shared among all the earliest 
actions is a candidate to be a landmark, where “early” is a greedy approximation of 
reachability from the initial state. Consequently we can order newly found candidates 
before the initial landmark. The process is iterated unless there are no new candidates. 
Consequently the candidates we found are evaluated. The sufficient condition for a 
candidate to be a landmark is based on solving the relaxed task; using the relaxed plan-
ning graph, we remove all actions that can add the candidate and if the task becomes 
unsolvable, we have found a landmark. 

An extension proposed in [14] uses a more general concept of landmark. Instead of 
single proposition being a landmark, we can consider a set of disjunctive propositions 
forming a landmark; hence a disjunctive landmark. While such disjunctive landmark 
cannot be easily used as a subgoal, it can still be beneficially used for leading a search 
algorithm, e.g. by measuring the distance from a goal by the number of disjunctive 
landmarks that have not been achieved. 

For illustration we can imagine an example problem of a passenger, who needs to 
get from some location A in a city, which has an airport at location E and a shipyard at 
location D, to location G in another city, which has both airport and shipyard at location 
F. Figure 2.3 depicts landmarks we may find. 

 

Figure 2.3: Example of landmarks found in the travelling example, A and B are trivial landmarks, {C,D} 
and {E,D} are disjunctive landmarks, B and F are discovered through domain transition graph. 

 

   



19 
 

3 Planning with time 

The mathematical structure of time is generally a set with a transitive and asymmet-
ric ordering. It can be discrete, dense or continuous, bounded or unbounded, totally 
ordered or branching. For purpose of this thesis we rely on the structure of time as 
modelled by the set of natural numbers Գ.  

When reasoning about action and change, some notion of time is essential. So far 
we have considered time to be implicit, reasoning and planning in terms of action or-
dering. However such view can be restrictive in matter of handling concurrent actions. 
Although in plan space planning and planning graph the actions were partially ordered, 
in both cases a total ordering was enforced between the interfering actions. To demon-
strate a principle of concurrent action execution we can imagine a door with a spring 
lock that controls the turning of the knob. Two synchronized actions are required for 
opening the door: 1. pushing the spring lock and maintaining the pressure, and 2. turn-
ing the knob and pulling open the door. While we could add new action to represent the 
concurrent use of those two actions, in general case it would be both redundant and 
overcomplicating. Hence it is motivating to create a temporal reasoning system, which 
would enable reasoning about concurrent execution of actions and their joint effects. 
Such system should consist of a temporal knowledge base, a procedure for checking its 
consistency, a query-answering mechanism, and inference mechanism for discovering 
new information. 

In this chapter we first distinguish qualitative and quantitative notion of time and 
then we briefly introduce the temporal constraint networks and we further concentrate 
on the simple temporal networks. 

3.1 Qualitative and quantitative notion of time 

When we reason about time qualitatively, we connect events in the world with rela-
tions such as “before”, “after” or “overlap”. These relations do not specify exactly 
when something will happen or how long it will take until something else happens; they 
are not settled in time. The plan space planning with its action ordering and causal links 
can be seen as an example. The concept of temporal relations between instantaneous 
events is formalised by point algebra, which is further generalised to durative events by 
interval algebra. Due to space limitations, we do not describe them in this thesis, formal 
definitions can be found e.g. in [4]. 

Quantitative temporal reasoning in planning on the other hand takes into account 
numeric relations between events, e.g. event A happens “2 minutes before” event B. 
The temporal constraint network proposed in [15] was one of the first formalizations of 
quantitative temporal relations and their interactions; two models were proposed, one 
taking into account only interval relations between events, e.g. “2 – 8 minutes before”, 
hence called simple temporal problem, and a more general temporal constraint satisfac-
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tion problem, which allowed disjunctive relations, e.g. “2 - 3 or 7 – 8 minutes before”. 
Both models are widely used, e.g. in medical informatics, air traffic control and auto-
mated planning and scheduling. We describe both models in the next two sections. 

3.2 Temporal constraint network 

Temporal constraint satisfaction problem, shortly TCSP, is built upon constraint 
satisfaction problem formalism [16]. Formally, TCSP is a kind of CSP, where: 

 {x1, ..., xn} is a set of variables, whose domains are in Գ; each variable repre-
sents a time point. 

 {c1, ..., cm} is a set of unary and binary constraint, where each constraint is rep-
resented by a set of intervals {[a1, b1], ..., [ak, bk]}. 

A unary constraint restricts the domain of a variable to the given set of intervals; it 
represents the disjunction (a1 ≤ xi ≤ b1)  ש  ...  ש (ak ≤ xi ≤ bk). 

A binary constraint restricts the permissible values for the distance xj – xi; it repre-
sents the disjunction (a1 ≤ xj - xi ≤ b1)  ש  ...  ש (ak ≤ xj – xi ≤ bk). 

Since we usually need to relate time points to some global starting point, the “be-
ginning of the world”, it is useful to add a variable representing it. Such variable x0 than 
allows to rewrite unary constraints on variables to binary constraints representing the 
distance from x0, whose domain is restricted to a single value. 

A network of binary temporal constraints can be represented by a directed con-
straint graph, where the nodes represent the variables and an arc (xi, xj) represents a 
binary constraint between nodes xi and xj. An illustration of such graph is provided in 
Figure 3.1. 

 

Figure 3.1: Illustration of a network of binary constraints with 5 variables and 4 constraints. 
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Given a constraint network we are usually interested in the following questions: 

 Is the network consistent? 

 What is the minimal domain of xi? 

 What is the minimal constraint between xi and xj? 

Generally all these questions are NP-hard. An algorithm proposed in [4] can find a 
minimal network in O(n3ke), where n is a number of nodes, k is the maximal number of 
intervals any constraint can have and e is the number of arcs. Other algorithms for con-
sistency checking are proposed e.g. in [16]. 

In this thesis we are interested in a special case of TCSP, where each constraint is 
limited to single interval. This case is known as simple temporal problem, shortly STP. 
For simplicity we formalise operations on STP instead of TCSP, the reader may find 
appropriate formal definitions for TCSP e.g. in [16]. 

3.3 Simple temporal problem 

In STP every binary constraint between two time points (xi,xj) represents a minimal 
and maximal distance between them; we can write such constraint as a ≤ xj - xi ≤ b. A 
simple temporal problem is a pair (X,C), where: 

 X = {x1, ..., xn} is a set of time point variables in the same sense as in TCSP. 

 C is a set of intervals, where each interval rij = [aij, bij] represents the constraint 
between time point variables xi and xj of the form aij ≤ xj - xi ≤ bij. 

Consequently we can see that [aij, bij] = [-bji, -aji]. The composition and intersection 
operations are defined as follows: 

 Composition: rij · rjk = [aij + ajk, bij + bjk], which corresponds to the sum of the 
two constraints: aij + ajk ≤ xj - xi + xk - xj  ≤ bij + bjk  →  aik ≤  xk - xi ≤ bik. 

 Intersection: rij ת r’ij = [max{aij, a’ij}, min{bij, b’ij}], which represents the con-
junction max{aij, a’ij} ≤ xj - xi ≤ min{bij, b’ij}. 

We say that STP (X,C) is consistent if there exists at least one solution that satisfies 
all constraints, where a solution is an assignment of values to time point variables of the 
form (x1 = v1, ..., xn = vn). We call the problem of deciding, if a given instance of STP 
is consistent, the STP-consistency. 

Since constraints given in some general instance of STP may not represent the ac-
tual time between two time points and deciding consistency through searching for 
possible assignments of values to time point variables is not very effective, we try to 
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reduce the constraints with transitive closure operation defined as: rij ← rij ת (rik · rkj). 
An example of such reduction is shown in Figure 3.2. 

 

Figure 3.2: Example of transitive closure propagation; since event C happens at least 1 time unit after 
event B and event B happens at least 5 time units after A, we deduce that event C happens at least 6 time 

units after event A; similarly for maximal time distance. 

The propagation of transitive closure upon consistent STP tightens constraints to its 
minimal form. Such constraint network is then called minimal in sense that every point 
in any interval rij belongs to some solution. The minimal network has a desirable prop-
erty that any solution can be extracted without backtracking, simply by choosing step 
by step variable assignments satisfying all constraints from already assigned variables; 
while minimality of the network guarantees that there will always be a set of values to 
choose from. We refer to the problem of finding minimal network as STP-minimality. 
For example in Figure 3.2 we have achieved a minimal network. 

STP-minimality from the definition implies STP-consistency; also minimal network 
for inconsistent STP is not defined. Due to deep research in CSP field we can find vari-
ous algorithms with different properties for solving both STP-minimality and STP-
consistency. Since propagation of transitive closure solves STP-minimality, the most 
notable are path-consistency algorithms. A simple case of path-consistency algorithm 
for purpose of STP-minimality is the Floyd-Warshall algorithm, which finds shortest 
paths among all nodes in a graph; in our case the tightest constraints. 

Algorithm 3.1 – Floyd-Warshall algorithm for STP 

01 F-W(STP = (X,C)) 

02   foreach xi א X 
03     foreach xj א X \{xi} 
04       foreach xk א X \{xi,xj} 
05         rij ← rij ת (rik · rkj) 

 

The Floyd-Warshall algorithm computes the minimal network in Θ(n3), where n is 
number of time points, and if the original network was inconsistent, there will be at 
least one never satisfiable constraint of the form [aij, bij], where aij > bij; thus deciding 
STP-consistency. 
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Various path-consistency algorithms can be found e.g. in [16]. Among recent im-
provements of solving STP-minimality we can find adaptation of partial-path-
consistency, originally proposed for CSP in [17], as ΔSTP algorithm introduced in [18], 
which significantly speeds up computation of STP-minimality in sparse networks. An 
improvement of ΔSTP was introduced in [19] as  P3C algorithm. 

Since Floyd-Warshall algorithm is complete for STP and solves STP-minimality in 
Θ(n3), we have established a membership of both STP-consistency and STP-minimality 
in P complexity class. Further complexity analysis of STP-minimality provided in [19] 
establishes a membership in NC2; therefore STP-minimality is efficiently parallelisable. 
To our best knowledge, no parallel algorithm for STP-minimality has yet been pro-
posed in literature; hence the exploitation of inherent parallelism of STP-minimality is 
an open question. 
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4 Planning with resources 

Resource is generally some property of the world, which represents aggregation of a 
set of properties, which do not need to be distinguished. Using our toy-example with 
cars and passengers, an example of such property can be the number of places in a car. 
While we could represent each sitting room uniquely by e.g. predicate passenger-car-
room(John, Taxi177, next-to-the-driver), such information is not relevant for a sce-
nario, where we are interested solely in transportation of passengers between locations; 
in such scenario it is not important which sitting room the passenger took in a car, but 
solely if there was any sitting room in the car he could take, hence reducing the number 
of available sitting rooms. Although we could still represent sitting rooms in a car 
uniquely, as we can clearly see that their number is bounded, representing e.g. fuel in 
the car uniquely is unreasonable due to its continuous characteristics. The concept of 
resource is a form of abstraction, which leaves aside uniqueness of represented entities; 
as such it is a natural part of human abstraction process necessary for reasoning about 
the real world. Therefore the notion of resources is important for expressiveness of 
problems that can be solved in automated planning. 

Historically, resources have been considered a domain of scheduling, in which they 
were extensively studied. While planning is concerned in finding a set of actions 
needed to achieve a goal, the scheduling problem consists of finding time and resource 
allocation for a set of activities. Solving many real world problems naturally requires 
both planning and scheduling; however separation of both processes may not always be 
effective, e.g. a problem with many valid plans and a few valid schedules would require 
many iterations of the planning process. The problem of such sequential model is that 
planning itself is not enough informed how a plan should be shaped and structured to 
satisfy constraints later enforced in scheduling process.  

In the following sections we first present resource categories that distinguish re-
sources by their behaviour in a system. Consequently we briefly introduce scheduling 
and describe difficulties that arise from the integration of planning into scheduling and 
the introduction of resources into planning. 

4.1 Resource categories 

Since many properties of the real world can be considered resources of various 
characteristics, we need a way how to distinguish them. Here we try to compile a cate-
gorization of a large set of resources that can be encountered in real world problems 
and modelled in AI planning and scheduling. Our categorization is based on previous 
work in this matter in [20], [21] and [22]. 
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Based on the way a resource is consumed and produced, we distinguish between 
resources that are: 

 Consumable, when the resource is only consumed in the system; e.g. fuel in a 
car, which cannot be refuelled. 

 Producible, when the resource is only produced in the system; e.g. some waste-
product of industrial system. 

 Replenishable, when the resource can be both consumed and produced in the 
system; e.g. fuel in a car, which can be refuelled. 

 Reusable, when production and consumption must happen in tandem, e.g. for 
each consumption there exists a production. 

Based on quantities that can be consumed or produced by a resource we distinguish 
between resources that are: 

 Discrete, when the resource is consumed, produced, or used in discrete quanti-
ties; e.g. sitting rooms in a car. 

 Continuous, when the resource is consumed, produced, or used in continuous 
quantities; e.g. fuel in a car. 

Based on properties of capacity of a resource, we distinguish between: 

 Single-capacity, when the resource can be thought of as one unit, which must be 
consumed as a whole. 

 Multi-capacity, when the resource represents multiple units which can be used 
or consumed by different operations. 

 Fixed Capacity, when the capacity does not change over time. 

 Variable Capacity, when the capacity of the resource is a function of time; e.g. a 
battery whose capacity degrades. 

Additionally we distinguish between resources that are: 

 Shared, when multiple activities can access the resource. 

 Exclusive, when only a single activity can access the resource. 

 Single-dimensional, when only a single level of the resource is considered; e.g. 
the number of places in an elevator. 

 Multi-dimensional, when multiple levels of the resource are considered; e.g. an 
elevator with the maximal allowed number of passengers and the maximal al-
lowed weight. 
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Clearly we did not touch all the aspects a resource can attain in a real world prob-
lem. Uncertainty can be introduced in different forms; resource abstraction can attain 
different levels, e.g. in [21] authors propose pooled resources, which represent an ag-
gregation of multiple resources into a resource pool which is in turn a resource itself. 

4.2 Scheduling 

We can say that while planning is concerned in finding “what to do” to achieve 
some objective, scheduling is interested in finding “when and how” to do it. Scheduling 
is a broad research area. It has been a very active field within operational research for 
over 50 years. Also the amount of research invested in scheduling significantly exceeds 
research in AI planning. Today we can find scheduling applied in many various fields 
of human interest, e.g. industry and manufacturing, economics and computer science.  

In [23] scheduling is defined as the problem of allocating scarce resources to activi-
ties over time. In this thesis we consider a set of scheduling problems according to the 
definition proposed in [24]; the scheduling problems consists of: 

 a set of n activities {A1, ..., An} and 

 a set of m resources {R1, ..., Rm}, 

where each activity has a processing time and requires a certain capacity from one 
or several resources. The resources have given capacity, which cannot be exceeded at 
any point of time. Further there may be a set of temporal constraints between the activi-
ties and a cost function. The problem to be solved is to decide when execute each 
activity to minimize the overall cost, respecting both temporal and resource constraints. 

Based on type of activities in a problem we consider scheduling to be: 

 non-preemptive, if activities cannot be interrupted; this case is important for 
planning, as there is a correspondence between activities and actions in plan-
ning, and 

 preemptive, if activities can be interrupted at any time. 

Consequently we distinguish between decision and optimalization problems in the 
usual sense that decision problem consists of deciding, if there exists at least one 
schedule satisfying all constraints, while optimalization problem consists of finding 
valid schedule, whose objective function value is minimal. The objective function F 
can be of various forms; we use Ci to denote the completion time of activity Ai, among 
the most common we may find: 

 Makespan: F = max(Ci). 
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 Total weighted flow time: F = ∑ wiCi , where wi is a weight associated with ac-
tivity Ai, representing an importance of the activity. 

Other well known objective functions can be found e.g. in [24] and [25]. 

Since variety of scheduling problems is very wide, some description mechanism is 
needed. Graham’s classification introduced in [26] allows to represent a large number 
of scheduling problems and is widely used in scheduling theory. The classification uses 
notation α | β | γ, where: 

 α specifies the machine environment. α consists of two parameters α1 and α2, 
where α1 specifies the machines, e.g. α1 = 1 for single machine, α1 = P for iden-
tical machines, or α1 א {F, J, O}, where the set denotes Flow-Shop, Job-Shop 
or Open-Shop, which are cases with activities arranged into strongly related 
subsets [25]; α2 denotes the number of machines. 

 β specifies the job characteristics.  

 γ specifies the optimality criterion. 

A great source for further information on how well we are able to solve different 
classes of scheduling problems can be found in a book [25], which is being periodi-
cally extended and reprinted with new approaches. 

4.3 Integrating planning and scheduling 

The motivation for the integration comes from the fact that there is a large number 
of real world problems, which cannot be solved neither as a pure planning nor pure 
scheduling problem. Therefore a demand arises for scheduling to handle planning is-
sues and for planning to handle resources. Both directions are being explored in 
research and practical applications and often find a common ground in constraint satis-
faction formulation. 

The main issue for the scheduling to be able to reason about planning is a different 
notion of activity. While pure scheduling assumes static set of activities, to handle 
planning we need to be able to consider activity occurring once, multiple times, or not 
at all. On the other hand when we extend planning with resources (especially with 
multi-capacity resources) we cannot easily access the current amount of resource avail-
able prior to adding an action which consumes the resource, because the amount is 
determined relatively to other consuming and producing actions that may not be tempo-
rally related to the new action. 

During last two decades multiple systems integrating planning and scheduling were 
proposed in literature. We describe three of them in the next chapter. 
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5 Planning systems 

In this chapter we concentrate on planning systems which incorporate notion of 
time as an essential part of planning and allow some level of resource integration. In the 
following section we introduce CPT planner, constraint network on timelines, and time-
line-based representation framework. 

5.1 CPT planner 

Constraint Programming Temporal planner (CPT) [27] is an optimal planner which 
adopts a constraint satisfaction approach in plan-space planning using admissible heu-
ristics hm

 [28]. Implementation of the planner achieved top positions in international 
planning competition 2004 and 2006 [3]. 

 

5.1.1 Representation 

As defined earlier (Section 2.2.2) states in search tree of plan-space planning repre-
sent partial plans. Branching of the search space proceeds by picking a flaw and picking 
a resolver for the flaw, which is in context of constraint satisfaction realized by propa-
gation of corresponding constraints. 

The state of the planner is given by a collection of variables, domains and con-
straints, where variable and domains have the following meaning: 

 T(a) represents the starting time of action a. Initially T(a) = [0,∞]. 

 S(p,a) represents the support of precondition p of action a. Initially S(p,a) con-
tains all actions which can add p. 

 T(p,a) represents the starting time of S(p,a). Initially T(p,a) = [0,∞]. 

 InPlan(a) = {true, false} indicates if action a is in the current plan. 

The constraints correspond to disjunctions, rules, temporal constraints and their 
combinations. The consistency of temporal relations is maintained through STP (Sec-
tion 3.3) Since describing all the constraints would take several pages, we do not 
include them here; reader can find them in [27]. 

5.1.2 Search technique 

Same as in plan space planning, CPT searches through partially defined plans by in-
troducing resolvers for flaws. Choice of resolvers is realised by propagating new 
constraint from a binary split [C1;C2], where C1 is the first constraint to be propagated 
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and C2 is propagated when search using C1 fails (either is proven inconsistent or subop-
timal). The binary splits for flaws are generated as follows: 

 S(p,a) is an open condition if |Domain(S(p,a))| > 1, generating split:  
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 Mutex threat occurs when actions a and a’ are effect interfering, generating 
split: 
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 Support threat occurs when a’ threats a support S(p,a), both a and a’ are in the 
current plan and a’ may delete p, generating split: 
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Where dur(a) represents the duration of action a and dist(a,b) represents the lower 
bound on time between the end of action a and the start of action b. 

5.1.3 Summary 

The planner does not support concurrency of interfering actions due to its represen-
tation approach. Resource reasoning is limited to single-capacity resources; however 
the CSP formulation provides certain robustness for straightforward integration of con-
straint-based scheduling, although heuristics would become less useful, as they predict 
only completion time without any insight in overconsumption conflicts. The collapsed 
notion of action and action occurrence introduces certain limits into problem size as 
propagating constraints over all grounded actions that may appear in a plan can be 
computationally expensive when presented with rich domains. Additionally actions 
may be needed to occur multiple times in a valid solution for a planning problem, 
which CPT does not support directly. 

These aspects are being further studied; CPT3 attended recent IPC [11], however no 
other planner was attending temporal optimalization track, hence CPT3 competed in 
temporal satisfaction track, where  it did not stand much chance being optimal planner 
among heuristic planners. Our summary is based on original CPT introduced in [27]; 
although newer versions exist, we were not able to find publicly available literature 
describing them. 
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5.2 Constraint Network on Timelines 

So far constraint programming (CP) and planning met in several ways. CP was 
used as a blackbox solver for subproblems encountered during planning (e.g. STP), 
other approaches encode the planning problem as a CSP with a fixed length of plans, 
which is incremented when no solution is found. Constraint Network on Timelines 
(CNT) proposed in [29] uses a CSP approach extended by timelines, dimension vari-
ables and timeline constraints. 

5.2.1 Representation 

A timeline tl is defined by a pair (d(tl),h(tl)), where d(tl) is a domain of tl and h(tl) 
is a horizon variable, whose domain is a subset of natural numbers. Given an assign-
ment A of h(tl), a timeline tl defines a finite set of timeline variables (t-variables) 

]},1[|{),( AitlAtlV i  , whose domain of values d(tl-
i) is d(tl). 

Assuming T is a set of timelines, an assignment A of T is defined as an union of as-
signments AH and AV, where AH assigns all horizon variables for timelines in T and AV 

assigns all t-variables in  Ttl H tlhAtlV


)])([,( , where AH[h(tl)] denotes the assignment 

of h(tl) in AH. 

Obviously when horizon variable h(tl) of timeline tl is not bounded, the maximal 
set of t-variables for timeline tl is infinite. Also the size of the set of mandatory vari-
ables which are included in each solution is equal to min(h(tl)). Motivation for this 
definition of horizon variable comes from the need to represent initially unknown and 
unbounded horizon of timeline development sustaining effective CSP approach. Addi-
tionally horizon variables can be constrained as any other CSP variables, which allows 
a more informed problem modelling (e.g. usage of problem specific invariants and ad-
missible heuristics for interdependencies between amounts of steps in the evolution of 
system features). 

A constraint on timelines c is a triple (SV(c),ST(c), fct(c)), where SV(c) is a finite set 
of classical CSP variables, ST(c) is a finite set of timelines and fct(c) is a function which 
associates a finite set of CSP constraints with each assignment A of the horizon vari-
ables of the timelines in ST(c). The scope of constraints is included in

)]]([,1[),(|{)( tlhAicStltlcS TiV  . 

A constraint network on timelines is a tuple (V,CV,T,CT), where V is a finite set of 
variables, Cv  is a finite set of constraints whose scopes are included in V, T is a finite 
set of timelines whose dimensions are included in V and CT is a finite set of constraints 

on timelines (SV,ST,fct) such that VSV  and TST  . 

A consistent assignment (a solution) of a constraint network on timelines 
(V,CV,T,CT) is an assignment of the variables in V and of the timelines in T such that all 
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CSP constraint in CV and all CSP constraints induced by the constraints on timelines in 
CT and the assignment of V are satisfied. 

The proposed formulation can be seen as a generic constraint-based modelling 
framework for discrete event dynamic systems covering many frameworks such as 
automata, synchronized products of automata, timed automata, STRIPS planning, Petri 
nets and resource-constrained project scheduling as it was proved in [30]. 

Subsequently a quantitative notion of time can be added as new timeline t of type 
time, whose domain is included in Թ and i [1,h(t)-1], ti ≤ ti+1. At most one timeline t 
of type time can be associated with timeline tl, such timeline t is called a time reference 
of timeline tl. When t is the time reference of timeline tl, then tli represents the value of 
the value of tl at time ti, h(tl) = h(t) and (ti  = tj)   (tli = tlj).  

Evolution of time referenced timeline tl can be defined as needed, from in planning 
often used piecewise constant function representing the feature not changing between 
the time points, to more complicated problem specific functions, e.g. non-linear re-
source consumption/production. 

5.2.2 Search technique 

Algorithm presented in [29] is based on depth-first search with constraint propaga-
tion extended by phase that inserts new variables and constraints whenever the 
minimum number of a horizon variable is modified. This extension phase involves con-
straint propagation, which can include value removals triggering another extension 
phase and so on until fixed point is reached. The proposed algorithm was proved to be 
correct and terminate if all domains of values are finite. In general the algorithm does 
not terminate. 

5.2.3 Summary 

In AI planning the distinction between the modelling framework and the problem 
model often occurs somewhere between, allowing effective approach for solving a 
problem at cost of some limitations of modelling language. CNT goes towards problem 
modelling, defining only the basic entities on top of a CSP, and leaving most of model-
ling effort to problem specific modelling. Various kinds of information can be captured 
in CNT, such as both constraints modelling scheduling aspects and planning aspects, 
temporal constraints, constraints on both horizon variables and timeline variables, or in 
general, problem specific invariants and heuristics. Efficiency comes from informed 
problem modelling through global constraints, constraints between the states, con-
straints between the actions, symmetry breaking constraints, constraints pruning 
suboptimal solutions, or redundant constraints. The second edge of CNT’s freedom in 
problem modelling is a modelling complexity, which grows notably as each problem 
can be modelled in different ways potentially involving formulations of dozens of prob-
lem specific constraints. 
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Several problems from IPC [3] were examined, modelled and benchmarked in [29], 
mostly outperforming chosen optimal planners (MaxPlan, SatPlan and CPT). 

Proposed further research includes extension for handling uncertainty and adapta-
tion of other constraint programming techniques such as intelligent backtracking, 
structural decomposition, improved heuristics, limited discrepancy search, soft con-
straint propagation, constraint preprocessing and randomization and restart. 

5.3 Timeline based Representation Framework 

Main motivation for Timeline based Representation Framework (TRF) [31] comes 
from the need to shorten the time spent to synthesize software and implementation de-
tails while building on timelines through introducing higher level of abstraction 
providing modularity and reusability. 

5.3.1 Component based approach 

TRF is based on component approach that unifies timelines of different nature un-
der the concept of component, which can assume different sets of temporal evolutions 
and a horizon, over which are these evolutions defined. Behaviour of the component 
describes a way in which component’s properties vary in time. The component can 
have multiple behaviours, but only some can be desirable (consistent). 

Component evolutions are affected by planning and scheduling decisions. Given a 
set of components, a set of decisions determine their behaviours, where each compo-
nent must provide the implementation for computing its own behaviours based on the 
set of decisions and must provide the implementation for adjusting the decisions to 
avoid inconsistencies. 

In general, components influence each other’s behaviour. The domain theory speci-
fies which combinations of behaviours of all components are desirable (consistent). 
Synchronization specifies how the decisions introduced by certain component effects 
other components. 

5.3.2 Architecture 

TRF is hierarchically divided into three layers: Time/Parameters layer, Component 
layer and Domain layer. 

The Low Time/Parameters layer manages time and parameter information, provid-
ing interface for introducing new elements (variables) and imposing constraints on 
them, and access to elements values (temporal positions and parameters values). This 
layer contains algorithms for constraint propagation maintaining consistency. The cur-
rent implementation is based on solving STP for temporal variables and a CSP solver 
for parameters. 
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The Middle Component layer is the modular part of TRF architecture. Component 
is a module which encapsulates the logic for computing a timeline resulting from deci-
sions, evaluating the consistency of the computed timeline with respect to a set of given 
rules and computing a set of temporal and parameter constraints and further decisions 
to solve any threat to the consistency of the computed timeline. Points of choice are 
forwarded to higher layer. Currently TRF provides two types of components: state vari-
ables and reusable resources. 

The High Domain layer allows users to define both domain theory and plans. A 
plan is represented as a decision network. Given a set of components, a decision net-
work is a graph, where each vertex is a decision defined on a component and each edge 
is a relation between the components decisions. Relations can be of three types: tempo-
ral, value and parameter. A temporal relation between decisions A and B can prescribe 
temporal requirements such as A equals B, A starts_before B as modelled in interval 
algebra. A value relation can prescribe requirements such as A equals B and A differs 
B. A parameter relation is any constraint between the values of the parameters of the 
two decisions. Such decision network can be then explored. 

5.3.3 Summary 

TRF offers an attractive perspective for layered and modular integration of plan-
ning and scheduling based on components with underlying timelines and constraint 
programming. The framework could in principle subsume other approaches to planning 
by modelling their architecture as components and components’ behaviours, while it 
would also allow employing problem specific heuristics and control rules when needed. 
However generality comes with efficiency issues and the need to explore large space of 
possibilities is still present in the decision network. The motivation for TRF initially 
came from requirements on AI planning and scheduling appearing in European Space 
Agency in context of effective utilisation of time and resources in Mars Express probe; 
developed systems RAXEM [32] and MEXAR2 [33] showed significant improvements 
in efficiency and error-avoidance over human planners and led to formulation of TRF. 
Consequently a long-term planning system MrSPOCK [34] was developed upon TRF 
for Mars Express probe.  
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6 Our planning system 

Before we proceed to the description of our planning system, we shall first present 
the choices of conception we have made. The assignment of our thesis was to: 

“propose and implement own planning system with the focus on planning with 
durative actions that require limited resources for their execution”. 

The initial questions we asked ourselves were: 

 What planning problems will we solve? 

 How well will we solve the problems? 

 How will we determine what is a well solved problem? 

When developing a planning system, there are generally two boundaries between 
which we can be moving. One is pure theoretical, where the planning system is devel-
oped on sophisticated toy-problems, and the other is pure practical, where the planning 
system is tuned to solve a specific real world planning problem; although such system 
may no longer be a planner but an informed algorithm solving the planning problem. In 
recent two decades, research in the planning community has moved increasingly to-
wards the application of planners to realistic problems, among which we can find e.g. 
observation scheduling, planetary rover exploration, spacecraft control, logistic plan-
ning, plant control and manufacturing. International Planning Competition [3] has acted 
as another motivation element for development of competitive planning systems bi-
annually since 1998. Today IPC is a part of International Conference on Automated 
Planning and Scheduling [35]. In the context of the first IPC a new language was de-
veloped for both domain and problem definition. Problem Domain Definition Language 
(PDDL) [3]  started as a descendant from several other languages, notably STRIPS and 
ADL, and is incrementally extended with new features by the time of every new arriv-
ing competition. Importantly for us, since version 2.1 PDDL supports durative actions 
and numeric fluents which allowed the introduction of resources into planning problems 
in IPC. 

Therefore a reasonable answer to our first question was to use the planning prob-
lems proposed in IPC, specifically problems proposed in deterministic temporal track 
of the recent IPC2008, which leads us to the second and third questions. Real world 
planning problems often do not require optimal solutions which can be too hard to find 
and finding optimal solutions with domain-independent planners becomes even harder 
as their knowledge of the problem is limited by the expressiveness of the underlying 
language. Therefore in recent years, according to the movement of AI planning with 
time and resources towards realistic problems, heuristic planning systems attracted sig-
nificant attention; e.g. in IPC2008 temporal optimalization track was cancelled due to 
lack of participants. 
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Based on these facts, we have decided not to search for optimal solutions but in-
stead develop a strategy which would be able to reasonably solve planning problems 
with time and resources proposed in the deterministic temporal satisfaction track of 
IPC2008. This decision allows us to answer the third question. Since the measure of 
quality for all problems in the chosen track is the total time (makespan), we concentrate 
our strategy on this aspect. Consequently by keeping the same rules as used in the com-
petition (runtime limits), we will be able to compare our results with the competition 
participants and determine and discuss how well we have solved the planning problems 
based on this comparison. 

We adopt the state variable representation (Section 2.1) and extend it with time an-
notation via temporal databases (Section 6.3); a similar extension has been done e.g. in 
the context of Chronicles [4]. We further construct the domain transition graphs (Sec-
tion 2.2.4) upon the state variables and create the resource instances (Section 6.4) for 
the resources that occur in the (original) planning problem. We store the temporal rela-
tions in the simple temporal network (Section 6.2).  

An action in our planning system (Section 6.5) is a collection of changes of the 
state variables’ value, requests on the value of the state variable and resource events on 
the resource instances. The changes, requests and resource events of the action may 
occur at the beginning, at the end, or over the duration of the action. An action instance 
is an action with time points assigned to the beginning and the end, which propagates 
the time points into the changes, requests and resource events. 

The planning problem in our system (Section 6.5.2) consists of the set of actions, 
set of the temporal databases, set of the resource instances and the set of goal values of 
the state variables. The solution of the planning problem (Section 6.5.2) is a set of 
scheduled action instances (a plan) such that the last values of the state variables’ tem-
poral evolutions are the goal values (we do not have intermediate goals), all temporal 
databases are consistent, all resource instances are consistent, and all changes, requests 
and resource events from the actions instances in the plan are settled in the correspond-
ing temporal databases and resource instances. Our planning algorithm (Section 6.6) 
searches for the solutions in a space of partial plans by inserting the action instances 
into the plan, and inserting changes, requests and resource events of the action instances 
into the temporal databases and resource instances, while it maintains the consistency 
of the resource instances, simple temporal network and temporal databases. 

In this chapter we first present how our planning system is structured through a 
conceptual model; then we describe individual components of our planning system and 
describe how we represent a planning problem. Further we introduce our approach to 
solving a planning problem and introduce our search algorithm. Consequently in the 
next chapter we present our results for the set of planning problems from IPC2008 and 
compare them to the results of other planning systems that participated in the competi-
tion. 
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6.1 Conceptual model 

Our conceptual model (Figure 6.1) is similar to other models proposed in the con-
text of e.g. Timeline-based Representation Framework (Section 5.3) and Chronicles [4]. 
We build upon a Simple Temporal Network (Section 3.3) which maintains qualitative 
temporal relations between the time points that are further used for temporal annotation 
of resource events, maintained by resource manager, and evolutions of state variables, 
maintained in temporal databases. Our search algorithm does not run directly on the 
temporal databases but upon the domain transition graphs (Section 2.2.4). The search 
algorithm can impose new temporal constraints into the temporal network based on the 
lower bound heuristic extracted from the domain transition graphs and in turn the 
search algorithm uses the state evaluation function upon the temporal network. 

 

Figure 6.1: The conceptual model of our planning system. 

The purpose of the simple temporal network is to maintain the minimal qualitative 
temporal relations between the time points. The time points are inserted into the net-
work by either an addition of an action into the plan (one time point for the start and 
one for the end of the action), or by inserting a new goal value of a state variable, which 
is temporally annotated by one new time point. These time points are further used in the 
resource manager and the temporal databases as the temporal parameters of resource 
events, changes of values of the state variables, and requests on a state variable to keep 
a value. We define the operations upon the simple temporal network in Section 6.2. 

The resource manager contains a set of resource instances that model the resources 
we have translated from the original planning problem. Each such resource instance 
contains a set of resource events, which represent productions and consumptions of the 
resource. A resource event is inserted into a resource instance when an action that con-
tains the resource event is inserted into a plan. The purpose of the resource manager is 
to incrementally maintain all resource events in each resource instance and determine if 
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a newly inserted resource event causes a resource conflict. The resource conflict can be 
an overconsumption or an overproduction of the resource instance. The conflict may 
cause a need to either update the temporal network, or add a new action into a plan. We 
define the resource manager and the resource instances in Section 6.4. 

For each state variable we use a temporal database that contains the evolution of 
the state variable in time. The evolution is stored as a sequence of changes of the value 
of the state variable. These changes are settled in time by time points from the simple 
temporal network, where each change contains two time points, one for the start and 
one for the end of the change (the changes have a duration). These time points are the 
time points used as parameters for the actions. Additionally between each two conse-
quent changes we can insert multiple requests on keeping the value of state variable for 
certain period of time defined by a pair of time points. An example of such temporal 
database for a state variable with domain {1, 2, 3} is illustrated in Figure 6.2. The tem-
poral relations between time points t1 – t10 are stored in the simple temporal network. 
We define the temporal databases in Section 6.3. 

 

Figure 6.2: Changes and requests in a temporal database; change[tx,ty] p → q represents a change of the 
value of the state variable from p to q that happens during time interval defined by time points tx and ty.  

One purpose of the domain transition graphs is to store the actions that contain 
changes of the state variables. With each arc (a, b) of the domain transition graph for a 
state variable we associate actions that contain a change a → b, where a and b are 
nodes of the graph. Another purpose of the graph is to provide the search algorithm 
with the lengths of the shortest paths between nodes, where the length of the path re-
flects either minimal duration of actions associated with arcs, or the number of arcs 
traversed. An example of a domain transition graph for the state variable’s domain {A, 
B, C, D} is illustrated in Figure 6.3. The shortest paths are calculated once per problem 
instance; notice the shortest paths for a single arc may be different for the number of 
arcs traversed and for the minimal time needed.  Traversing an arc in the domain transi-
tion graph corresponds to an addition of an action into a plan and an insertion of the 
change of a value into the corresponding temporal database. 

The problem we solve is traversing all the domain transition graphs from the initial 
values to the goal values. Since we are planning with time, we need the goal values to 
be the last values in the temporal evolutions of the state variables, in other words, the 
last changes in the temporal databases must change the values to the goal values.  
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Figure 6.3: Domain transition graph for a state variable’s domain {A, B, C, D}, where action are associ-
ated with arcs, for an action(x), x represents the duration of the action, and new arcs have been added. t 

represents the minimal number of arcs that need to be traversed to achieve a change of state variable, and 
w represents the minimal time needed to achieve the change.  

The principal idea of our search algorithm is to take the goals one by one and trav-
erse the domain transition graphs from the initial values to the goal values. However 
traversing a single arc in a domain transition graph represents adding one of the actions 
associated with the arc into the plan. Such action then also represents traversing an arc 
in other domain transition graphs (an action generally occurs multiple times in the 
graphs), and the action may contain a request on certain value of some state variable. 
To support these collateral transitions and requests, we need to traverse all the other 
domain transition graphs to the point when the original transitions and requests do not 
break the chain of changes in the temporal databases, which is in principle the same 
problem as traversing the graph to satisfy a goal, when we extend the chain of changes 
from the initial value to the goal value. 

The chain of changes (Figure 6.2) can be extended either at the end by connecting 
it with another chain or by adding a hitch between two consecutive changes; the chain 
cannot be extended at the beginning, since it represents the initial value of the state 
variable. An example of such extensions is illustrated in Figure 6.4. 

 

Figure 6.4: Illustration of an example when a chain of changes in a temporal database is extended once at 
the end (4→2; 2→1), and once by a hitch (2→5; 5→2) to support a request. 
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The chosen extension of a chain of changes in a temporal database depends on the 
“cost” of such extension. Since the evaluation criterion for the plans we find is the 
makespan, we prefer less time demanding extensions, where the demand on time is 
calculated recursively from all extensions caused by the original graph traversal and all 
extensions caused by collateral traversals; we formally define this calculation as a state 
evaluation function in Section 6.7. 

Informally, we can describe our search algorithm as the following iteration: 

 Until all goals are satisfied:  

o choose one unsatisfied goal representing a goal value of a state variable, 

o extend the end of chain of changes in a temporal database corresponding to 
the state variable by traversing the domain transition graph, where the last 
change in the extended chain supports the goal value, there are no conflicts 
on the resource instances, and the extension is the least time demanding 
among all possible extensions. 

We are planning in a space of partially specified plans. Considering the plan space 
planning (Section 2.2.2), our actions are grounded except for temporal parameters and 
the causal links are implicitly satisfied by the extensions of the chains of changes. 

6.2 Simple Temporal Network 

We have introduced the Simple Temporal Problem in Section 3.3 and concerned 
ourselves with two problems, STP-consistency and STP-minimality. In further text we 
consider only the simple temporal network, although we call it a temporal network or 
simply a network. By propagation of a constraint on the temporal network we refer to 
enforcing path consistency of the network which makes the network minimal [16]. 

Having a minimal temporal network (X, C), we introduce an operation update(ti, tj, 
a, b), where ti, tj א X, a,b א Ժ and a ≤ b, and define it to be: 

 a consistent update of the temporal network (X, C) if max(a, aij) ≤ min(b, bij), 
and 

 an inconsistent update of the temporal network (X,C) otherwise. 

A consistent update operation update(ti, tj, a, b) of a network (X,C) is realised by 
assignments: 

 aij ← max(a, aij), and  

 bij ← min(b, bij). 
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In further text we use simply “update” instead of “applying update operation”; ad-
ditionally we consider consistent updates unless specified otherwise. 

For a minimal temporal network (X,C) and a set of consistent updates S = {up1, ..., 
upn} we say that S is a consistent update of (X,C) iff we can apply the updates from S in 
any order and the final network is consistent. 

6.2.1 Qualitative relations 

A simple temporal network allows expressing quantitative temporal relations be-
tween events in the world. However we would like to express qualitative relations as 
well. Before defining qualitative relations on a simple temporal network we need to 
introduce a new constant sup א Գ and modify the addition operation; a א  Ժ ת (– sup, 
sup): 

 a + sup → sup, 

 a + (– sup) → – sup, 

 sup + sup → sup, 

 (– sup) + (– sup) → – sup, 

 (– sup) + sup is not defined, however it cannot occur. 

The constant sup represents for our purposes some large enough number that shall 
never be reached through addition; such constant then allows us to express locally infi-
nite time which we need for the definition of qualitative temporal relations. 

Consequently we can define qualitative relations between two time points ti and tj 
in a minimal network (X,C) as follows: 

 ti happens possibly before tj iff update(ti, tj, 1, sup) is consistent; we denote it as 
PB(ti, tj). 

 ti happens necessarily before tj iff PB(ti, tj) holds and update(ti, tj, –sup, 0) is in-
consistent; we denote it as NB(ti, tj). 

 ti is undefined to tj iff both PB(ti, tj) and PB(tj, ti) hold. 

 ti happens possibly before or at the same time as tj iff PB(ti, tj) holds or up-
date(ti, tj, 0, 0) is consistent; we denote it as PBE(ti, tj). 

 ti happens necessarily before or at the same time as tj iff PBE(ti, tj) holds and 
update(ti, tj, –sup, –1) is inconsistent; we denote it as NBE(ti, tj). 

Symmetrical relations are not strictly needed to be defined, since we can obtain 
them by swapping the time points. 
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Consequently to enforce some of these relations upon a minimal network (X,C), we 
use the update operation in the following way: 

 If PB(ti, tj) holds then we can enforce NB(ti, tj) by update(ti, tj, 1, sup). 

 If PBE(ti, tj) holds then we can enforce NBE(ti, tj) by update(ti, tj, 0, sup). 

6.2.2 STP-minimality and incremental maintenance 

Minimal temporal network has several important properties: 

1. If the minimal temporal network exists, it is consistent. 

2. Binary constraint between any two time points can be accessed in constant 
time. 

3. For any new constraint between two time points of the minimal network we can 
determine in constant time whether the new constraint causes inconsistency of 
the network. 

4. Any subnetwork of a minimal network is also minimal, where a subnetwork 
represents a complete subgraph of the complete graph representing the original 
network. Consequently any new constraint that preserves consistency of the 
minimal subnetwork can be propagated in the subnetwork making it again 
minimal. And finally, a subnetwork, upon which we have propagated new con-
straints, can be merged with the original network by propagating into the 
original network all binary constraints that have changed in the subnetwork. 

The first property comes directly from the definition of the minimal network.  

The second property is obvious, since by propagation of transitive closure we have 
found binary constraints between all pairs of time points.  

The third property holds, because a new constraint r’ between two time points ti 
and tj is consistent with the minimal network iff r ת r’ ≠  where r is the original con-
straint between ti and tj; the third property then follows from the second.  

The fourth property is based on the fact that we can find a solution (an instantiation 
of time points) from a minimal network with a backtrack-free algorithm (also known as 
decomposability [16]). Assuming we have a minimal temporal network and its subnet-
work which was updated by several constraints and minimalized, we can find a solution 
of the subnetwork backtrack-free by sequentially instantiating time points to values 
satisfying constraints between the newly instantiated time point and all previous time 
points. Since existence of such instantiation comes from the minimality of the subnet-
work, we can continue by instantiating the time points from the original network; any 
solution of the updated subnetwork must be necessarily a solution of the original sub-
network, since a propagation of a new constraint can only reduce the number of 
solutions but cannot create new ones. We have found a solution of the original temporal 



42 
 

network which also satisfies the updated subnetwork (taking only the corresponding 
time points). Therefore we can update the original network with the changed constraints 
from the updated subnetwork and since we have a solution, the updated temporal net-
work is consistent and can be minimalized. 

These properties act as a motivation force for maintaining a minimal temporal net-
work. Based on our conceptual model, both the resource manager and the temporal 
databases benefit from the constant access time to constraints between the time points. 
The third property then allows detecting new inconsistent constraints as early as they 
might be introduced. Consequently the fourth property is important for efficiency, al-
lowing us to solve subproblems, which involve introduction of new constraints, on 
significantly a smaller network. 

However maintaining a minimal temporal network is costly. The Floyd-Warshall 
algorithm (Section 3.3) can compute a minimal network in Θ(n3), where n is the num-
ber of time points; hence solving STP-minimality. Still our temporal network is 
maintained incrementally by introducing new time points and constraints among them, 
therefore we do not actually need to solve STP-minimality from scratch, but only 
minimalize a temporal network whose minimality was invalidated by newly updated 
constraint. For this purpose we use incremental full path consistency algorithm (IFPC) 
proposed in [19]. The input of the algorithm is a minimal temporal network (X,C) and a 
new constraint represented by a interval r’ij = [a,b], where time points ti, tj א X. 

Algorithm 6.1: Incremental full path consistency 

01 IFPC((X,C), r’ij) 
02   if r’ij ת rij =  return inconsistent 
03   if r’ij ת rij = rij return (X,C)   //the network is minimal 

04   rij ← r’ij ת rij                   //performing update 

05   P ←  
06   Q ←  
07   foreach tk א X, k ≠ i, k ≠ j 
08     if rkj ת (rki · rij) ≠ rkj 
09       rkj ← rkj ת (rki · rij) 
10       P ← P  {k} 
11     if rik ת (rij · rjk) ≠ rik 
12       rik ← rik ת (rij · rjk) 
13       Q ← Q  {k} 
14   foreach p א P, q א Q, p ≠ q 
15     rpq ← rpq ת (rpi · riq) 
16   return (X,C) 

 

The IFPC algorithm has a worst-case time complexity of O(n2), where n is the 
number of time points in (X,C); the first loop (lines 07-13) iterates (n – 2)-times, while 
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the second loop (lines 14-15) iterates ((n – 2)2 – (n – 2))-times in the worst case sce-
nario, when all pairs of time points need to be updated. The choice of i at line 15 is 
arbitrary, we could have chosen j as well. The algorithm is correct and complete, which 
was proved in [19]. 

6.3 Temporal databases 

The purpose of temporal database is to store information on how a state variable 
evolves in time. We have informally introduced state variables in Section 2.1; the do-
main of a state variable is a set {p1, ..., pn}, where p1, ..., pn-1 represent mutually 
exclusive propositions of a planning problem and pn is an additional proposition repre-
senting unknown value; for simplicity we consider the set totally ordered. Using the 
example from Figure 2.2, the domain of the state variable would be the set 
{pass_at(pass, loc1), pass_at(pass, loc2), pass_at(pass, loc3), boarded(pass, car), none-
of-those}. 

Since the time evolution of a state variable is a piecewise constant function, we can 
express and store the time evolution of a state variable as a set of changes of the state 
variable’s value. Additionally we need to represent requests on a state variable to keep 
certain value for a period of time. Using qualitative temporal relations we have defined 
for a simple temporal network, we define changes and requests for a state variable with 
domain D and a minimal temporal network (X,C) as follows: 

 change is a quadruple (ts, te, vini, vfinal), where ts, te א X, NBE(ts,te), vini, vfinal א D, 
and 

 request is a triple (ts, te, v), where ts, te א X, NBE(ts,te), v א D. 

Several implications come from this definition: 

 We allow changes of values such as vini = vfinal; although semantically it is not a 
change of value, such change can be introduced during planning as a form of 
blocking the time period, over which the change occurs. 

 Both changes and requests can be instant (ts = te); this generally has no influ-
ence on our planning system. 

 The value of a state variable is undefined during the time interval of any 
change; this is a desired property, however notice that the value none-of-those 
is a well defined value of a state variable (it represents the fact that all other 
propositions represented by the values are negated). Additionally, no two 
changes can intersect. 
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Consequently we define the temporal database TDB for a state variable to be a to-
tally ordered set {ch1, R1, ..., chn, Rn}, where chi is a change and Ri = {(ts1, te1, v1), ..., 
(tsm, tem, vm)} is a set of requests. 

For a temporal network (X,C), we say that TDB = {ch1, R1, ..., chn, Rn} is consistent 
iff chi, Ri, chi+1, Ri+1 א TDB: vfinal-i = vini-i+1, NBE(tei,tsi+1) and (tsj, tej, vj) א Ri: vfinal-i = 
vj, NBE(tei,tsj) and NBE(tej,tsi+1). In other words, the temporal database is consistent iff 
the changes and sets of requests form a chain as illustrated in Figure 6.2 and all the time 
points in requests and changes are ordered according to this chain. 

Our concept of the temporal database is similar to temporal databases and Chroni-
cles proposed in [4] and IxTeT planner [36], although compared to Chronicles we 
merge events and persistent conditions by allowing non-instant changes. The total or-
dering of the changes is determined by the search algorithm. 

6.4 Resource manager 

Our resource manager plays a role of all-purpose resource solver which aggregates 
multiple categories of resources and techniques for solving them. In practice, when we 
are presented with a new problem, the resource manager creates a set of resource in-
stances corresponding to the resources occurring in the problem. Using the domain of 
our toy-problem with cars and passengers, such set of resource instances might be 
{fuel-car1, fuel-car2, sitting-rooms-car1, sitting-rooms-car2}. 

The purpose of resource manager is to: 

 inform the search algorithm when a new resource event would introduce either 
inconsistency of the underlying simple temporal network or inconsistency of 
some resource instance; 

 maintain the sets of resolvers to resource conflicts and inform the search algo-
rithm when they become inconsistent; 

 update the underlying simple temporal network with new constraints following 
the least-commitment principle. 

The construction of resource manager is depicted in Figure 6.5. The search algo-
rithm introduces new resource events to the resource manager which are consequently 
directed to the corresponding resource instance; the resource event is a polymorphic 
structure that contains different information dependent on the resource category it tar-
gets, hence we define the resource events separately for each resource category. 

A resource instance, which received a new resource event, then triggers the corre-
sponding solver. The solver performs a reasoning that involves updates of the temporal 
network and produces multiple sets of resolvers, where a resolver is an update opera-
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tion. These new sets of resolvers are further aggregated with other sets into one struc-
ture; notice the behaviour of aggregation is dependent on the specific solver; hence we 
define these behaviours separately for each solver. 

The aggregated sets of resolvers are basically a set of sets of resolvers, where we 
remember for every set of resolvers the corresponding resource instance for which the 
resolvers were produced; we need this correspondence for specific behaviours of ag-
gregation. We also maintain only consistent updates as resolvers. 

Formally, a set of sets of resolvers is a set SR = {S1, ..., Sn}, where Si = {R1, ..., Rm} 
and Rj is a consistent update operation. 

 

 

Figure 6.5: Illustration of resource manager concept and its relations to simple temporal network and 
search algorithm. 
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Assuming we have a temporal network (X,C) and a set SR, we say that: 

 SR = {S1, ..., Sn} is consistent with respect to (X,C) iff there exists such set U = 
{R1, ..., Rn} that Ri א U: Ri א Si and U is a consistent update of (X,C). 

 SR is inconsistent iff it is not consistent. 

Our definition of consistency reflects the semantics of our solvers; a solver pro-
duces sets of resolvers and from each such set we must choose a resolver that updates 
the temporal network; therefore by updating the temporal network we resolve the origi-
nal conflict of the resource instance, which was the reason for the production of 
resolvers.  

Further implications come from the definition: 

 SR =  is trivially consistent; this comes from the universal quantification over 
the empty set and reflects that if there are no sets of resolvers, there are no re-
source conflicts. 

 If א  SR then SR is trivially inconsistent; we cannot choose a resolver from 
empty set, hence we cannot resolve the resource conflict. 

Although we keep only consistent resolvers in SR, generally their combinations 
may not be consistent; e.g. {update(ti,tj,1,sup), update(ti,tj,–sup,–1)} is an inconsistent 
update. Additionally resolvers can occur in SR multiple times in different sets. We can 
see there is a straight resemblance with constraint satisfaction problem; for a set SR = 
{S1,...,Sn} we can define CSP variables {x1,...,xn} with domains dom(xi) = Si. We could 
further define binary constraints as consistent pairs of updates and propagate the con-
straint through arc-consistency, which could significantly reduce the size of the 
problem. Another inspiration we may take from CSP is the dual encoding [16]. Instead 
of searching for a resolver for each set from SR = {S1,...,Sn}, we can search for resolvers 
in ڂSi.  

We say that DSR is a dual form of SR = {S1,...,Sn} if DSR = {(M1,R1),...,(Mm,Rm)}, 
where ڂSi = {R1,...,Rm} and Mj = {b1,...,bn}, where bi = 1 if Rj א Si and bi = 0 if Rj ב Si. 

Mj is practically a binary mask that represents which sets Si are satisfied by resolver 
Rj. The obvious advantage of DSR is that when there is a large number of resolvers 
shared among sets Si we can find the set U faster than by picking resolvers directly 
from sets Si. Additionally the choice of resolver can be guided by the information from 
binary masks, e.g. we can choose a resolver whose binary mask is the largest comple-
ment to the current mask, where the current mask represents all resolvers we have 
chosen so far. On the other hand, DSR is more difficult to maintain and brings minimal 
benefit when there are a few resolvers shared among sets Si. 

The problem we solve is how to determine if SR is consistent without unnecessarily 
updating the temporal network (X,C); we do not want to update the network, because 
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some resource conflicts can be resolved by actions. For this purpose we extract a sub-
network (X’,C’), where X’ contains all time points that appear in the resolvers in SR. 
We did not implement binary constraints; instead we consider only one global con-
straint which is represented by the consistency of the subnetwork we have extracted. 

Algorithm 6.2: SRCC (SR-consistency check) 

01 SRC(STN,SR) 
02   if SR =  return consistent 
03   choose S א SR 
04   foreach R א S 
05     STN’ ← STN updated with R 
06     SR’ ← SR\{S} 
07     SR’ ← SR’\{inconsistent resolvers with respect to STN’} 
08     if STN’ is consistent 
09       ret ← SRC(STN’,SR’) 
10       if ret = consistent return consistent 
11   return inconsistent 

 

The input of the SRCC algorithm is a simple temporal network (X,C) and a set of 
sets of resolvers SR. The algorithm determines if SR is consistent or inconsistent with 
respect to (X,C). At line 05 we create a new copy (STN’) of the simple temporal net-
work (STN) and update this copy with resolver R using IFPC algorithm (Algorithm 
6.1). At line 07 we filter out from SR’ all inconsistent resolvers with respect to STN’. 
The completeness of the algorithm comes from lines 03 and 04, where we systemati-
cally explore all sets of resolvers, and for each set we try all resolvers. The algorithm is 
correct, because the order, in which the temporal network is updated by resolvers, does 
not affects consistency of the network. The algorithm is in principle a depth-first 
search. 

For the purpose of our planning system we have implemented three resource 
solvers: 

 Single-capacity Reusable Resource solver. This is a simple solver that solely 
preservers that no events can overlap in time. 

 Multi-capacity Replenishable Resource solver with relative consumption 
events and absolute production events. Relative consumption events represent 
events that consume a resource in a relative way, e.g. driving a car between two 
locations consumes certain amount of fuel depending on the distance between 
locations, while absolute production events represent assignment of certain 
level to the resource, e.g. refuelling a car sets the amount of fuel to its maximal 
capacity. 
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 Multi-capacity Replenishable Resource solver with relative consumption and 
production events. This resource is also known as a reservoir [37]. We adopt 
the minimal critical sets approach on precedence graphs as proposed in [4] and 
extend it to reservoirs as proposed in [37]. 

We further describe these solvers in the following subsections. 

6.4.1 Single-capacity Reusable Resource 

Single-capacity reusable resource corresponds to a single machine that can support 
only one activity at any time; as defined in scheduling [24]. Instead of activities we use 
events carrying the same meaning. 

An instance of this resource is defined as a set {(ts1, te1), ..., (tsn,ten)}, where (tsi, tei) 
is an resource event for this resource and tsi, tei are time points from the underlying sim-
ple temporal network. To determine whether a newly introduced event (ts, te) causes 
any conflict with events from the resource instance, we check all pairs ((ts, te), (tsi,tei)). 

For a temporal network (X,C), a resource instance {(ts1, te1), ..., (tsn,ten)}, a new 
event (ts, te) for this resource instance, and each pair ((ts, te), (tsi,tei)) we act as follows: 

 If both PBE(te, tsi) and PBE(tei, ts) hold, we produce a new set of resolvers {up-
date(te, tsi, 0, sup), update(tei, ts, 0, sup)}, 

 if PBE(te, tsi) holds and PBE(tei, ts) does not, we enforce NBE(te, tsi), 

 if PBE(tei, ts) holds and PBE(te, tsi) does not, we enforce NBE(tei, ts), and 

 if neither PBE(te, tsi) nor PBE(tei, ts) hold, we produce an empty set of resolv-
ers, which trivially implies inconsistency. 

The produced sets of resolvers are then aggregated into SR. 

6.4.2 Multi-capacity Replenishable Resource 

Replenishable resource is generally a resource that can be both consumed and pro-
duced in the system. Here we consider only resources that are consumed in relative way 
and produced in absolute way; this choice is caused by the set of the planning problems 
we have been solving.  

For a temporal network (X,C) and a resource instance we define: 

 a production event PE = (val, t), where val א Գ and t א X , 

 a consumption event CE = (val, t) val א Ժ\Գ and t א X. 

Consequently we define a resource instance as a totally ordered set RI = {PE1, 
CEs1, ..., PEn, CEsn}, where PEi is a production event and CEsi is a set of consumption 
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events. The ordering is defined as PEi, CEsi, PEi+1 א RI, (valj, tj) א CEsi: NBE(ti,tj), 
NBE(tj,ti+1), and we denote it as PEi < CEsi < PEi+1. Also PEn < CEsn. 

We say that a resource instance RI = {PE1, CEs1, ..., PEn, CEsn} is consistent iff 

 PEi, CEsi, PEi+1 א RI: PEi < CEsi < PEi+1, PEn < CEsn, and 

 PEi, CEsi א RI: vali + ∑valj ≥ 0. 

In other words, the production events and the sets of the consumption events are to-
tally ordered, and the consumption events do not overconsume the amount produced by 
the previous production event. 

For a new resource event, temporal network (X,C) and a resource instance we act 
as follows: 

 When a new production event PE = (val, t) is introduced for a resource instance 
{PE1,...,PEn}, we find a PEi such that PE < PEi and  PE ث PEi-1. Then we in-
sert PE into the resource instance after PEi-1, insert an empty set  representing 
CEs after PE and move from CEsi-1 to CEs all consumptions events which sat-
isfy PBE(t,tk), where (valk,tk) א CEsi-1. 

 When a new consumption event (val, t) is introduced for a resource instance 
{PE1, ..., PEn}, we find a PEi such that NBE(ti, t) and either i = n or NBE(t,ti+1). 
Then we insert (val,t) into CEsi. 

These insertions may invalidate the least-commitment approach to the resource 
management; we insert both the production and the consumption events at the last posi-
tion they can take in the current (partially ordered) chain of events, and the 
redistribution of the consumption events caused by the insertion of a new production 
event is also predetermined. However according to our experiments, the “temporal 
window” of the possible positions, where we could insert an event, is usually very nar-
row and the positions are reduced to one; this is caused by the temporal constraints on 
the time point t that arise from the collateral insertions of changes and requests into the 
temporal databases (changes and requests from the action that caused the resource 
event). 

Notice we can use the same approach for the symmetrical case, when consumption 
is absolute and production is relative. Figure 6.6 illustrates how the new events are in-
serted into the resource instance. 

We make a strong semantic assumption that an assignment of the resource level 
represents a production of the resource. However absolute events can be used in a more 
general way where we may not even be able determine if the event corresponds to a 
production or a consumption of the resource. Therefore usage of this approach is de-
pendent on the insight we have into the way a specific resource in the planning problem 
is used. 
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Figure 6.6: An example insertion of new resource events. The resource instance is initially consistent 
(20-19 ≥ 0 and 15-5 ≥ 0). A new consumption event that consumes 8 units is inserted (bold), and the 

resource becomes inconsistent (20-27 < 0). The inconsistency is then resolved by an insertion of a new 
production event (18) and redistribution of the consumption events (bold). 

6.4.3 Reservoirs 

The reservoirs are generally multi-capacity replenishable resources with relative 
consumption and production events. 

For a temporal network (X,C), the resource event E on a reservoir is a pair (val,t), 
where val א Ժ and t א X; the consumption events have val < 0 and the production 
events have val > 0 (event with val = 0 has no influence on the reservoir). Consequently 
a resource instance is a pair (EV, cap), where cap is the capacity of the resource and EV 
= {E1, ..., En} is a set of events. 

We further say that event Ei collides with event Ej if neither of the following holds: 

 vali > 0, valj < 0 and NBE(ti, tj), nor 

 vali < 0, valj > 0 and NBE(tj, ti). 

The background of this relation consists of several ideas: 

1. For a reservoir (EV, cap) we assume each consumption event (vali, ti) to be a 
requirement |vali| over a time interval [ti, sup], and each production event (valj, 
tj) to be a requirement |valj| over a time interval [-sup, tj]. Further we assume, 
that we have available x units, where x = cap + ∑|valj|, where (valj, tj) א EV is a 
consumption event. We have obtained a reformulation of the reservoir to a 
multi-capacity reusable resource as proposed in [37]. 

2. To find the resource conflicts for a multi-capacity reusable resource we follow 
the approach from [38] and [4]. We consider a precedence graph, where nodes 
correspond to requirements and an edge between two nodes exits iff the time 
intervals of requirements corresponding to nodes may overlap. 
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We can now see that our collision relation determines a precedence graph on events 
in the reservoir and since we store temporal relations in temporal network, we do not 
need to explicitly build the precedence graph.  

To demonstrate the principle of the reformulation, we take a simple example of a 
resource instance (EV, 100), where EV = {(-70, t1), (-60, t2), (30, t3), (40, t4), (-40, t5)}, 
we further assume that there are temporal relations between time points as illustrated in 
Figure 6.7, which also illustrates how the resource events on the reservoir are trans-
formed into the requirements on the reusable resource. Our collision relation 
determines the potential intersections between the time intervals of the requirements; in 
other words, it relates all pairs of events excluding the pairs, whose intervals in refor-
mulated task cannot intersect, e.g. E4 and E5 in Figure 6.7.  The resulting precedence 
graph for the example is illustrated in Figure 6.8. 

 

 

Figure 6.7: Transformation of the reservoir into a multi-capacity reusable resource. Dotted lines represent 
temporal relation necessarily before. 

 

Figure 6.8: The precedence graph for a multi-capacity reusable resource. The capacity of the resource is 
170 (capacity of the reservoir + requirements of all production events). Lines represent potential intersec-

tion of the time intervals of the requirements. Bold lines represent the complete subgraph that 
overconsumes the resource (70+40+30+60 > 170). 

The precedence graph tells us, which requirements may overlap in time, therefore if 
there exists any complete subgraph (a clique), whose nodes represent requirements that 
together consume more units than we have available, we have found a potential re-
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source conflict. We are especially interested in the minimal overconsuming sets of re-
quirements, since by preventing resource conflicts on all the minimal sets we prevent 
all the conflicts. These sets are also referred to as minimal critical sets (MCS). To find 
all MCSs we use algorithm proposed in [4]. 

Algorithm 6.3: MCS-expand 

01 MCS-expand(C,P)  //initially C = , P = EV 
02   foreach Ei א P 
03     P’ ← {Ej א P| j < i, Ei collides with Ej} 
04     C’ ← C’  {Ei} 
05     if C’ is overconsuming 

06       MCSs ← MCSs  {C’} 
07     else if P’ ≠  
08       MCS-expand(C’,P’) 

 

The algorithm takes as an input an empty set and a set of events and then greedily 
searches for MCSs. The events in EV are considered to have some total ordering. Once 
the algorithm finishes, the variable MCSs contains all found minimal critical sets.  

To prevent a resource conflict represented by a MCS we need to remove some edge 
(Ei, Ej) from the precedence graph, where Ei and Ej are in the MCS; our definition of 
the collision relation provides us with guidance. To find all resolvers of potential re-
source conflict for a MCS we search for all pairs (Ei, Ej), where i ≠ j, Ei, Ej א MCS, vali 
< 0, valj > 0 and PBE(tj, ti); for each such pair we introduce a new resolver update(tj, ti, 
0, sup) for this MCS.  

Figure 6.8 illustrates a precedence graph for the example in Figure 6.7; we have 
found one MCS = {E1, E2, E3, E4} and the only edge that can be removed from the 
precedence graph is (E3, E2). For this edge we create a resolver update(t3, t2, 0, sup). If 
the temporal network is updated with this resolver, then the production event E3 will 
occur before the consumption event E2, which prevents the overconsumption conflict. 

Once we have a set of resolvers for each MCS, we remove from SR all sets of re-
solvers that belonged to the concerned resource instance and introduce into SR our 
newly constructed sets of resolvers. In other words, we rebuild the sets of resolvers 
whenever a new resource event is inserted into the resource instance.  

It is important to note that the transformation from a reservoir to a reusable re-
source allows us to handle only the overconsumption resource conflicts; to find the 
resolvers for the overproduction conflicts we would have to create another symmetrical 
transformation to handle them. However, based on the planning problems we have en-
countered, there often exist only overconsumption conflicts in reservoirs, e.g. sitting-
rooms in a car is a reservoir which cannot create overproduction conflict; since a con-
sumption represents a passenger entering car (consuming available space) and 
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production represents a passenger leaving a car then an action that caused overproduc-
tion conflict wouldn’t be ever supported. 

6.5 Representation 

Based on definitions of temporal network, temporal database and resource instance, 
we define an action. An action is a sextuple A = (tps, tpe, dur, CHs, RQs, REs), where 

 tps and tpe are time point parameters; upon the introduction of the action into a 
plan we associate them with the time points from temporal network. 

 dur א Գ is a duration of the action, 

 CHs is a set of changes of the state variables’ value, 

 RQs is a set of requests on the state variables, 

 REs is a set of resource events for the resource instance. 

According to this definition, we could also refer to an action as a partially specified 
temporal operator [4]. However to distinguish between operators in PDDL we use the 
term “action” as defined and when an action becomes instantiated with time points we 
call it an action instance. 

Before we define the planning problem and the solution, we describe how we trans-
late a planning problem from PDDL representation into our representation.  

6.5.1 Translation 

The translation of a planning problem defined in PDDL to our representation con-
sists of several steps: 

1. Using the translation module from Temporal Fast Downward planning system 
[39] we translate the PDDL representation to a state variable representation. 
This translation includes grounding all operators in PDDL. The state variables 
forms a set SV = {sv1, ..., svn}, where svi is a state variable. We denote the set of 
all grounded operators as AS, in further text we use the term “actions” instead 
of grounded operators. 

2. We create a new simple temporal network (X,C) with two time points ts, te and 
update it with update(ts, te, 0, sup). These two time points represent “the begin-
ning of the world” and “the end of the world”; we denote them as t-start and t-
end. Any further time point t inserted into the network satisfies NBE(t-start, t) 
and NBE(t, t-end). 
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3. For each state variable svi א SV we create a temporal database TDBi, insert new 
time point t-endi into X and insert new change (t-start, t-start, v-inii, v-inii) into 
TDBi, where v-inii represents the initial value of the state variable and  t-endi 
represents “the local end of the world”; any time point t that appears in a re-
quest or a change in TDBi satisfies NBE(t, t-endi). 

4. For each state variable we create a domain transition graph DTG. The nodes of 
DTG correspond to the elements of state variable domain. With each arc (vali, 
valj) א DTG we associate a set of actions ASk ك AS such that all actions in ASk 
contain a change for this state variable that changes vali to valj. 

5. Consequently we use both the state variable translation and the original formu-
lation of the problem in PDDL to translate numeric fluents to resource 
instances. We further search for domain transition graphs such that they contain 
only a single arc (vali, vali); for each such DTG we create an additional re-
source instance of single-capacity reusable resource, then we remove all such 
domain transition graphs and corresponding temporal databases from our repre-
sentation. 

6. We translate all operations with numerical fluents to resource events and asso-
ciate them with corresponding actions; this includes addition of new resource 
events for removed state variables in step 5. 

Problem Domain Definition Language is being continuously extended with each in-
ternational planning competition and currently supports broad range of features. Our 
planning system supports durative actions, strips and in a limited way numeric fluents; 
we support numeric fluents as long as we can translate them into resources. Further 
description of the extensions of PDDL can be found in [3]. 

The translation we use at step 1 extends with durative actions the translation pro-
posed in context of Fast Downward planner [8] , which we have briefly introduced in 
Section 2.2.4. Steps 5-7 are technically simple; hence we do not describe them in detail. 
Notice at step 5 we substitute state variables with resource instances based on the struc-
ture of DTG; this is the case of state variables that represent real world features like 
“phone line is in use” or “worker is busy” and therefore we can encode them as one-
machine resources. For example we can imagine an action pass-through that represents 
a person moving through a door, which is so narrow that no two persons can pass 
through the door simultaneously. Such action would contain a change 
¬occupied→occupied at the beginning, and occupied→¬occupied at the end. We merge 
such two changes into a change ¬occupied→¬occupied over the action interval; we can 
merge them as long as there is no other action that contains a request or a change re-
quiring occupied. Now the domain transition graph for the state variable capturing the 
propositions occupied and ¬occupied contains only single arc ¬occupied→¬occupied 
and the actions associated with this arc are only the grounded instances of the action 
pass-through. Such state variable and the corresponding temporal database and the do-
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main transition graph we remove, we create a new instance of the single-capacity reus-
able resource, and in the action pass-through we swap the change 
¬occupied→¬occupied for a resource event on this resource instance. This transforma-
tion saves us some strong decision of temporal relations when searching for a plan. 

To demonstrate the translation, we illustrate how we translate a simple example 
with 2 passengers {P1, P2}, 1 car, and 5 locations {A, B, C, D, E}. At step 1 we receive 
a set SV = {sv1, sv2, svc} of three state variables, two for the passengers and one for the 
car, and a set of actions AS, where the initial values of the state variables are sv1 ← A,  
sv2 ← D and svc ← A. The temporal network and the temporal databases we create at 
step 3 are illustrated in Figure 6.9. 

 

Figure 6.9: On the left we illustrate the temporal databases for the state variables with changes represent-
ing initial values. On the right side we illustrate the initial temporal network, where t-end1, t-end2 and t-

endc are the time points representing the end of corresponding temporal databases. Notice we do not 
show the arcs obtained from the transitive closure. Notice that any further time point t that is inserted into 

the temporal network must satisfy NBE(t-start, t) and NBE(t, t-endi) for all temporal databases. 

 

Figure 6.10: The domain transition graphs for state variables svc (on the left), sv1 and sv2 (on the right). 

At step 4 we create the domain transition graphs for each state variable. The graphs 
are illustrated in Figure 6.10. At step 5 we create the resource instances {fuel, space} 
for the fuel in the car and the sitting-rooms in the car and add into actions correspond-
ing resource events; all board actions contain a resource event (-1, t) for the space 
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resource, unboard actions contain an event (1, t) for the space resource, and all drive 
actions contain an event (x, t) for the fuel resource, where x differs for each action (ob-
tained by grounding at step 1), and t is a time point parameter. Both space and fuel 
resources have a fixed capacity, and the resource fuel is initially updated with a produc-
tion event that represents the initial fuel in the car. 

6.5.2 The planning problem 

In our planning system we define the planning problem as a sextuple (STN, TDBs, 
DTGs, RIs, AS, Goals), where: 

 STN is a simple temporal network, 

 TDBs is a set of temporal databases, 

 DTGs is a set of domain transition graphs, 

 AS is a set of actions, 

 RIs is a set of resource instance, and 

 Goals is a set of goal values of the state variables, which should the state vari-
ables attain at the end of theirs temporal evolutions. 

The structures in the planning problem are constructed and connected as we have 
described in the previous section. 

A solution for the planning problem (STN, TDBs, DTGs, RIs, AS, Goals) is a quin-
tuple (STN’, TDBs’, RIs’, SR, Plan), where  

 STN’ is a minimal simple temporal network that evolved from STN by addition 
of time points and constraints, 

 TDBs’ is a set of consistent temporal databases that evolved from TDBs by ad-
dition of changes and requests, 

 the set SR upon the set of resource instances RIs’ is empty, where RIs’ evolved 
from RIs by addition of resource events, 

 Plan = {A1, ..., An} is a set of action instances such that all changes, requests 
and resource events exist in corresponding temporal databases and resource in-
stances, and 

 all the goal values of the state variables from Goals are the final values of the 
last changes in the corresponding temporal databases. 

Notice the set SR is an auxiliary structure maintained by the resource manager; as 
such it is not a part of the problem definition, although it is a part of the solution and 
states of the search algorithm. 



57 
 

From the solution (STN’, TDBs’, RIs’, SR, Plan) we can extract a plan, which 
solves the original planning problem, in the following way: 

1. Since STN’ = (X, C) is minimal, we can instantiate all time points from X by 
starting with t-start ← 0 and assign the minimal possible value to every other 
time point backtrack-free (Section 3.3). This instantiation schedules all requests 
and changes in temporal databases, all resource events in the resource instances 
and all actions in the Plan. 

2. Because all temporal databases in TDBs’ are consistent, time evolutions of the 
state variables are well defined (Section 6.3); in other words, at any time the 
state variable has a single value. 

3. Since SR is empty (trivially consistent), there are no remaining resource con-
flicts, and since it is consistent, all time evolutions of the level of the resource 
instances are well defined and do not contain any resource conflicts (overcon-
sumptions and overproductions). 

4. Because all goal values of the state variables are the final values of the last 
changes in the corresponding temporal databases, the state variables keep the 
goal values indefinitely and at the time when the last action in the plan ends, all 
the goals are satisfied. 

5. The set Plan contains fully instantiated and scheduled actions; consequently 
Plan is the solution of the original planning problem and the total time to exe-
cute the Plan is determined by the end of the latest action in the Plan. 

Notice we can determine the total time of execution without instantiating the time 
points; the total time is carried in the constraint between t-start and t-end, the minimal 
value from an interval representing the constraint is the total time. In further text we use 
the term makespan instead of the total time of execution. 

For a planning problem (STN, TDBs, DTGs, RIs, AS, Goals), we further define the 
initial state s0 = (STN’, TDBs’, RIs’, SR, Plan), where STN’ = STN, TDBs’ = TDBs, RIs’ 
= RIs, SR = , Plan = .  

Our search algorithm extends the initial state by addition of actions into Plan, 
where each such addition of an action includes insertion of changes, requests and re-
source events of the action into corresponding temporal databases and resource 
instances, insertion of two new time points into the temporal network, and propagation 
of the resulting constraints in the temporal network. Each such insertion of the action 
produces a new state si; we denote the set of all possible states our search algorithm can 
produce as S. 

For the planning problem (STN, TDBs, DTGs, AS, RIs, Goals) and a set of states S 
for this planning problem, we define the state evaluation function eval: S → Գ ൈ Գ as 
follows: 
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The min operations take the smallest value from the intervals representing con-
straints in STN’ between the pairs of time points (t-start, t-end), and (t-start, t-endi) for 
each temporal database TDBi א TDBs’, where s’ = (STN’, TDBs’, RIs’, Plan) א S. The 
purpose of the function is to capture both makespan of the current partial plan, and all 
the lengths of the time evolutions of the state variables. We also assume eval() = 
(sup,sup). 

Consequently since we maintain a minimal temporal network, the constraints can 
be accessed in constant time, therefore eval is computed in constant time with respect to 
the size of the temporal network and the number of changes in the temporal databases. 

We further define ordering < on pairs of natural numbers, (a, b), (x, y) א  Գ ൈ Գ: 
(a, b) < (x, y) iff (a < x) or (a = x and b < y); hence we can compare eval(s) and eval(s’), 
where s, s’ א S. We could achieve the same effect by multiplying makespan with a 
large enough number. 

6.6 Search algorithm 

Before we proceed to the search procedures, we describe two additional steps that 
occur in our planning system: 

 Preprocessing. In the preprocessing step we compute the shortest paths in the 
domain transitions graphs. For each arc in the domain transition graph we use 
two measures of length. Initially, the first measure of length represents the 
minimal duration from all durations of the actions associated with this arc; we 
denote this measure as T. Initially, the second measure is represented by pair 
(1, min-time), where min-time is the value from the measure T for the corre-
sponding arc, and pairs use ordering < as we have defined it for natural 
numbers; we denote this measure as OT. We initialize all arcs with empty ac-
tion sets by sup, respectively (sup, sup). Consequently we compute all-pairs 
shortest paths using Floyd-Warshall algorithm (Section 3.3) for both measures 
of length T and OT. Resulting shortest paths using T correspond to minimal 
time needed to achieve change of value of state variable; and using OT the 
paths represent the minimal number of operators needed to achieve a change, 
where less time-consuming paths are preferred. 

 Postprocessing. In the postprocessing step we need to resolve all remaining 
sets of resolvers in SR. We extend the SRC algorithm (Algorithm 6.2); we en-
rich the subnetwork by the time points t-start, t-end and corresponding 
constraints, and instead of searching for a first solution to imply consistency, 
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we search for an optimal solution using branch and bound technique minimiz-
ing the minimal value of the constraint between t-start and t-end. 

6.6.1 Search procedures 

Our approach is driven by an idea of dividing a planning problem into multiple 
smaller subproblems where each subproblem contains only one goal from the original 
problem. This idea in AI planning is actually as old as the original STRIPS algorithm 
(Section 0) and reappears in different forms in other planning systems, e.g. in Fast 
Downward [8], or in SGPlan. However the subproblems are always dependent on each 
other; if they had not been dependent, we would have formulated them separately. 

The representation and the conceptual model we have introduced lead to the way 
how we approach the idea. Assuming we have a planning problem and an initial state 
s0, we solve a subproblem of achieving the first goal from Goals; produced partial solu-
tion s1 is then an initial state for solving another subproblem for the second goal from 
Goals, and so on. Since achieving one goal can violate previously achieved goals, we 
iterate until all goals are achieved (Algorithm 6.4). 

Algorithm 6.4: The outer loop 

01 root_search(s0, goals, bound) 
02   open_goals ← goals 
03   s ← s0 
04   while open_goals ≠  
05     foreach goal א open_goals 
06       s ← goal_search(s, goal, bound) 
07       if s =  return  
08       update open_goals with s 
09   return s 
10    
11 goal_search(s, goal, bound) 
12   tp ← new time point in s.stn 
13   change ← the latest change in s.TDB 
14   request ← (goal, tp) 
15   return way_search(s, change, request, bound, false) 

 

The input of the algorithm is an initial state, a set of goals and a bound (for now we 
assume the bound is (sup, sup)). The algorithm produces either a state or an empty set 
indicating that no solution was found; if a state is produced, it is transformed into a so-
lution in the postprocessing step. At line 05 we assume there exists some total ordering 
of goals that does not change; we choose goals from open_goals according to this or-
dering. At lines 12-14 we take a goal value of the state variable, the last change of this 
variable in the temporal database, create new time point in temporal network and in-
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voke the way_search to extend the chain of changes (Figure 6.4) to support a request 
representing a temporally annotated goal value of the state variable. 

We can say that we incrementally build the final solution by merging solutions of 
subproblems into one partial solution. Since we can evaluate each state of the search 
with eval function, we try to minimalize this function upon each subproblem we solve; 
consequently a sequence of partial solutions with low values of makespan and short 
time evolutions of the state variables should lead to final solution with low makespan. 
This concept can be seen as a form of meta heuristic. 

For solving a subproblem we use a suboptimal adaptation of branch and bound 
technique. Our search space is generally infinite and even if we arbitrarily bound the 
search space by e.g. a reasonable number of actions or a maximal makespan, it is still 
very large; therefore we employ the same meta heuristic for solving the subproblem. 
We further describe the solving of a subproblem in the context of our search proce-
dures. The relation of the search procedures is illustrated in Figure 6.11. The output of 
all the search procedures is either a state or an empty set indicating that either no plan 
for the subtask was found, or all the plans found evaluated worse than the current 
bound. 

 

 

Figure 6.11: Illustration of the calls between the search procedures and their meaning. 

The way_search procedure (Algorithm 6.5) searches in a domain transition graph 
for an extension of the chain of changes (Figure 6.4) to support the fact, which is either 
a change or a request. The chain of changes is being extended by inserting new actions 
into a plan. The insertion of the action is performed by the procedure action_search 
(Algorithm 6.6) that also handles a subtask of inserting all resource events into the re-
source instances, and calls the procedure support_search (Algorithm 6.7) for handling  
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all the collateral insertions of the facts into the temporal databases. The extension of the 
chain of changes performed by way_search represents achieving the value of a state 
variable from some starting value. When the values are the same (line 03), way_search 
either returns the current state, or searches for another path from the fact to the next 
change in the temporal database to complete the hitch and keep the temporal database 
consistent (line 04 → line 06). If the starting value (from the current change) and the 
fact value are not the same, way_search first propagates into the temporal network the 
minimal time needed to achieve the fact value from the starting value (computed in the 
preprocessing step with the measure of length T upon the corresponding DTG). The 
recursion in the algorithm consists of choosing each action (line 11) that can change the 
state variable value, inserting this action into a plan (line 13), and calling itself for the 
change inserted by the chosen action (line 16). The applicable_actions (line 11) is a set 
of actions associated with arcs (vfinal, vi) in DTG, where vfinal is the final value of the 
current change, and the actions are ordered according to the shortest paths between 
nodes vi and the node representing the start value of the fact. In other words, actions 
that lead to the nodes nearer to the final node are chosen first. 

Algorithm 6.5: way_search 

01 way_search(s, change, fact, bound, jumping) 
02   if(eval(s) > bound or RM = inconsistent) return  
03   if(change.ve = fact.vs) 
04     if(jumping) 
05       change’ ← next change after fact in s.TDB 
06       s ← way_search(s, fact, change’, bound, false) 
07     return s 

08   my_best ←  ; ts, te ← new time points in s.STN 
09   s.STN.propagate_minimal_time 
10   if(eval(s) > bound) return  
11   foreach a א aplicable_actions 
12     bound ← min(eval(my_best), bound) 
13     found ← action_search(s,ts,te,a,bound) 
14     if(found ≠ ) 
15       change’ ← new change in found.TDB added by action a 
16       found ← way_search(found,change’,fact,bound,jumping) 
17     if(found ≠ ) my_best ← found 
18   return my_best 

 

The input of the Algorithm 6.5 is a state, a change, fact (from the same temporal 
database as change), bound is the current bound, and jumping is a boolean switch that 
determines if the algorithm should extend the temporal database by a hitch of changes, 
or at the end (Figure 6.4). The way_search procedure can be seen as an algorithm that 
searches for the shortest path in a graph whose weights associated with arcs change 
depending on the currently traversed path.  
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The procedure action_search (Algorithm 6.6) creates a new action instance and in-
serts it into a plan. The actions instance is created by assigning provided time points as 
the action temporal parameters, which also propagates these time points into all the 
changes, requests and the resource events in this action (line 02). The resource events 
are inserted into the corresponding resource instances (line 03) and an aggregated set of 
changes and requests (facts) in this action instance is further sent to the support_search 
procedure. 

Algorithm 6.6: action_search 

01 action_search(s, ts, te, act, bound) 
02   act_instance ← act(ts, te) 
03   RM.resolve(act_instance.resource_events) 
04   if eval(s) > bound return  
05   if RM = inconsistent 
06     s ← resource_search(s, bound) 
07     if s =  return  
08   s.Plan ← s.Plan  {act_instance} 
09   facts ← all changes and requests in act_instance 
10   return support_search(s, facts, bound) 

 

The input of the Algorithm 6.6 is a state, time points ts and te for the beginning and 
the end of the action act, and the current bound. If the resource manager invokes incon-
sistency, we try to resolve the underlying resource conflict by invoking 
resource_search for the current state at line 06. 

The support_seach procedure (Algorithm 6.7) recursively searches for a way how 
to insert all provided facts into the temporal databases. 

Algorithm 6.7: support_search 

01 support_search(s, facts, bound) 
02   if eval(s) > bound or RM = inconsistent return  
03   my_best ←  
04   choose fact א facts 
05     foreach change א suitable changes for fact 
06       bound ← min(eval(my_best), bound) 
07       if change is the last in s.TDB 
08         found ← way_search(s,change,support,bound,false) 
09       else   
10         found ← way_search(s,change,support,bound,true) 
11       if found ≠        
12         found ← support_search(found, facts\{fact}, bound) 
13         if(found ≠ ) my_best ← found 
14   return my_best 
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The input of the Algorithm 6.7 is a state, a set of changes and requests that need to 
be supported, and a bound. The algorithm recursively searches for the optimal state 
such that all changes and requests are settled in corresponding temporal databases. The 
set of suitable changes at line 05 is determined for each request and change by their 
temporal context; e.g. an action instance with time points ts, te propagates these time 
points to its changes and requests, then these time points are used to find the changes in 
the corresponding temporal databases such that the requests and the changes from the 
action can be added before or after them without violating consistency of the temporal 
network. Lines 07-10 correspond to two situations, either the chosen change is the last 
change in the temporal database, then we simply need to find one way in the domain 
transition graph to satisfy the requested value, or the change is not last, then we need to 
find a way to the needed value and an another way back to satisfy the next change in 
the temporal database (Figure 6.4). 

The resource_search procedure (Algorithm 6.8) is called from the action_search 
procedure when the resource manager invokes inconsistency. The purpose of the re-
source_search is to add into the plan such action that the inconsistent resource instance 
becomes consistent. 

Algorithm 6.8: resource_search 

01 resource_search(s, bound) 
02   AR ← actions which may resolve the resource conflict 
03   ts,te ← new time points in s.STN 

04   my_best ←  
05   foreach a א AR 
06     bound ← min(eval(my_best),bound) 
07     found ← action_search(s, ts, te, a, bound) 
08     if(found ≠  and conflict resolved) my_best ← found 
09   return my_best 

 

The input of the Algorithm 6.8 is a state and the current bound. The algorithm 
searches for an action that would resolve the resource conflict caused by the latest re-
source event inserted. The set of all actions that might resolve the resource conflict (line 
02) is determined as those actions which contain a resource event that is the opposite to 
the resource event that caused the last resource conflict, e.g. assuming we have a car 
that has 4 sitting-rooms and a fifth passenger boards the car, then the set AR consists of 
the actions representing a passenger leaving a car. 

We further prevent the unreasonable cycling of the search procedures in three 
ways: 
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 An obvious cycling prevention is the current bound; any state that evaluates 
worse is no further extended. Actions have always some duration; therefore 
pruning the suboptimal states prevents the cycling. However we do not always 
have the bound, although some state achieving the goal is usually discovered 
quickly, in the general case, such state can be hard to find and the search algo-
rithm can get lost. Additionally for a high current bound we would still be 
exploring unnecessary cycles, e.g. cycles formed from “almost instant” actions. 

 We prevent cycles on resolving a resource conflict; no resource_search can be 
invoked twice in the search tree for the same resource instance. This reflects 
that while we are resolving a resource conflict by searching for an action, we 
work with an inconsistent resource instance (which is for this time considered 
to be removed from the resource manager); therefore we lose the control over 
the consistency of the resource instance and it is unlikely that we would ever 
get it back. For example we can imagine a situation with a car that starts at 
some location without a gas station and the car has no fuel. Then once we move 
a car, a resource conflict arises and we try to resolve it within resource_search. 
However the refuelling again requires moving, which invokes another re-
source_search and so on. Notice we allow “open” resource conflicts as long as 
they are scattered among resource instances (and as long as the search tree is 
not cut by the current bound). 

 We further limit every single search through DTG to visit the same node in the 
domain transition graph only once. This is a reasonable limitation, since the 
purpose of the way_search is just to find a path and any obstacles in the path 
are solved by the invocation of action_search. We can equivalently say that in 
one search trough DTG, the explored path never cycles. 

To keep the pseudo-code of the search procedures comprehensible, we have ex-
cluded the second two cycling preventions. The prevention on resource_search is 
realized by switching semaphores upon entering and leaving the procedure, and we 
keep track of visited nodes in the way_search procedure to prevent the cycling; notice 
that “jumping” resets the visited nodes. 

We demonstrate how a solution is discovered on an example depicted in Figure 
6.12. We assume there are five locations A, B, C, D, and E, one car that consumes fuel 
and two passengers P1, P2 that need to be transported to location C. For simplicity we 
assume that the lengths of roads between the locations are directly proportional to the 
time needed to drive through them and the fuel consumed by driving through them; 
hence values assigned to edges correspond to time units needed and fuel units con-
sumed. We further assume that boarding and leaving the car takes one time unit and the 
refuelling takes five time units; boarding and leaving the car can be executed concur-
rently. The car has initially 100 units of fuel, passenger P1 is at location A and 
passenger P2 is at location D, and location E contains a gas station. There are three state 
variables, two correspond to the locations of the passengers (includes being in a car) 
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and a state variable corresponding to the location of the car; we denote the transition 
graphs as DTG1, DTG2 and DTGc, and the corresponding temporal databases as TDB1, 
TDB2 and TDBc.  

Notice we have already used this example in Section 6.5.1, Figure 6.9 shows the 
initial temporal databases and temporal network and Figure 6.10 shows the domain 
transition graphs. We also demonstrate how the search procedures are called in Figure 
6.13; we simplify the parameters of the search procedures to reflect only the purpose 
why they were called, e.g. way_search(DTG1: A→C) represents that the procedure was 
called to find a path in DTG1 from the node A to the node C. 

The problem divides into two subproblems, each achieving one goal of transporting 
a passenger to location C (lines 02 and 15); we assume the subproblem for passenger P1 
is being solved first. 

 

Figure 6.12: An illustrative problem where two passengers need to be transported to a location by one car 
that consumes fuel. 

The solution of the first subproblem is straightforward; the ordering from the pre-
processing step guides the search algorithm directly to the optimal state with makespan 
92; consequently all other branches of the search are cut early. The temporal database 
TDBc then contains changes representing A→B→C, and TDB1 contains A→car→C 
(line 14). 
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01 root_search({DTG1:A→C, DTG2:D→C}) 
02 └ goal_search(DTG1:A→C) //solving the first subproblem 
03   └ way_search(DTG1:A→C) 
04     └ action_search(P1 boards car at A) 
05       └ support_search({DTGc:A}) 
06         └ way_search(DTGc:A→A) //makespan 1 
07     └ way_search(DTG1:car→C) 
08       └ action_search(P1 leaves car at C) //makespan 2 
09         └ support_search({DTGc:C}) 
10           └ way_search(DTGc:A→C) 
11             └ action_search(car driven A→B) //makespan 62 
12             └ way_search(DTGc:B→C) 
13               └ action_search(car driven B→C) //makespan 92 
14               └ way_search(DTGc:C→C) 
15 └ goal_search(DTG2:D→C) //solving the second subproblem 
16   └ way_search(DTG2:D→C)  
17     └ action_search(P2 boards car at D) //makespan 93 
18       └ support_search({DTGc:D}) 
19         └ way_search(DTGc:B→?→B) //making a hitch 
20           └ action_search(car driven B→D) //makespan 103 
21           └ way_search(DTGc:D→B) 
22             └ action_search(car driven D→B) //res. conflict 
23               └ resource_search() 
24                 └ action_search(refuel car) //makespan 108 
25                   └ support_search({DTGc:E}) 
26                     └ way_search(DTGc:B→E→B) //a hitch 
27                       └ ... //makespan 138 
28                     └ way_search(DTGc:D→E→D) //a hitch 
29                       └ ... //makespan 138 
30             └ action_search(car driven D→E) //res. conflict 
31               └ resource_search() 
32                 └ action_search(refuel car) //makespan 118 
33                   └ support_search({DTGc:E}) 
34                     └ way_search(DTGc:E→E) 
35             └ way_search(DTGc:E→B) 
36               └ action_search(car driven E→B) //makespan 128 
37     └ way_search(DTG2:car→C) 
38       └ action_search(P2 leaves car at C) //makespan 128 
39         └ support_search({DTGc:C}) 
40           └ way_search(DTGc:C→C) 

 

Figure 6.13: The call tree of search procedures solving the example problem. 

Solving the second subproblem, the search algorithm first discovers that the car 
could move from B to D to pick up the second passenger (line 20); which would extend 
TDBc to A→B→D→B→C. However when searching the path D→B (line 22), the re-
source manager invokes inconsistency, because moving the car from D to B 
overconsumes the resource instance representing fuel. Therefore the search further 
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branches on adding an action that would resolve the conflict. Since there is only one 
such action representing refuelling at E, the search further discover two ways how to 
achieve the action (notice at this point we are searching the same DTG in different tem-
poral contexts). The resource conflict is resolved by extending TDBc to 
A→B→E→B→D→B→C (line 26) which is a part of the first state found that achieves 
the goal. Alternative state is found containing A→B→D→E→D→B→C and having 
the same makespan 138 (line 28). Finally when the search algorithm explores an alter-
native path B→D→E→B (line 30), the consequent resource conflict is resolved 
without extending the path (line 34), which leads to optimal state containing path 
A→B→E→D→B→C in TDBc and the makespan 128 (line 40). 

6.6.2 Improving solutions  

When we divide a planning problem into subproblems we solve these subproblems 
in some order that reflects the ordering of goals in the original planning problem. This 
ordering in turn affects the quality of a solution our search procedures produce. Differ-
ent techniques for the goal ordering have been proposed in AI planning literature, e.g. 
in the context of landmarks [13] and in the context of Fast Downward [8]. However 
instead of adapting some of these techniques for planning with time and resources, we 
have chosen to search the space of permutations of goals. This decision was also moti-
vated by the set of our testing problems, which contained only a small number of 
problems whose goals could be reasonable ordered, and by the competition rules that 
favoured anytime approaches. 

To improve the solution of a planning problem we use randomize and restart ap-
proach (Algorithm 6.9). 

Algorithm 6.9: randomize and restart 

01 RR(s0, goals) 

02   best ←  
03   while not end 
04     s ← s0 
05     next_goals ← permute_randomly(goals) 
06     s ← root_search(s, next_goals, eval(best)) 
07     s ← postprocessing(s) 
08     if s ≠  best ← s 

 

The Algorithm 6.9 terminates when all permutations of goals were explored or it 
can be terminated arbitrarily; we keep track of the permutations explored when there 
are less than 10 goals. The state best then contains the solution with the lowest 
makespan our planning system could find. At line 06 we use as a bound the evaluation 
of the previously discovered solution, hence significantly pruning the search space of 
consecutive searches. 
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7 Testing 

Our testing set of problems is formed from the planning problems with time and re-
sources proposed in the context of deterministic temporal satisfaction track of 
International Planning Competition 2008 [11]. The problems come from three domains: 
openstacks, elevators and transport; for each domain there are 30 planning problems. 

In the following sections we will first introduce the domains and the problems they 
represent. Then we briefly introduce the planning systems that participated in the cho-
sen track of IPC2008 and whose results we use for comparison with ours. Finally we 
describe our testing environment, present and discuss our results, and describe our im-
plementation. 

7.1 Domains 

The openstacks domain is based on the “minimum maximum simultaneous open 
stacks” combinatorial optimization problem, which can be stated as follows: A manu-
facturer has a number of orders, each for a combination of different products, and can 
only make one product at a time.  

The total required quantity of each product is made at the same time (because 
changing from making one product to making another requires a production stop). 
From the time that the first product included in an order is made to the time that all 
products included in the order have been made, the order is said to be "open" and dur-
ing this time it requires a "stack" (a temporary storage space). The maximum number of 
stacks is given and the problem is to find a plan with the smallest makespan, without 
violating the maximum number of stacks constraint. 

The scenario of elevators domain is the following: There is a building with n+1 
floors, numbered from 0 to n. The building can be separated into blocks of size m+1, 
where m divides n. The adjacent blocks have a common floor. For example, suppose 
n←12 and m←4, then we have 13 floors in total (ranging from 0 to 12), which form 3 
blocks of 5 floors each, being 0 to 4, 4 to 8 and 8 to 12.  

The building has k fast (accelerating) elevators that stop only in floors that are mul-
tiple of m/2 (m has to be an even number). Each fast elevator has a capacity of x 
passengers. Furthermore, within each block, there are l slow elevators, that stop at 
every floor of the block. Each slow elevator has a capacity of y passengers. There are 
several passengers, for which their current location and their destination are given. The 
problem is to find a plan with the least makespan that moves the passengers to their 
destinations. 

The transport domain represents a logistic problem. There are multiple cities and 
multiple locations in a city. Each city contains a hub where packages from other cities 
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are delivered. Cities and locations in cities are connected with roads of certain length. 
There are trucks that can transport packages between cities and trucks that can transport 
packages between locations in one city. Consequently each truck has certain limited 
fuel capacity and a limited space for packages it can carry. Fuel is consumed by a truck 
when driving through a road and the packages are of various sizes. The gas stations are 
scattered among the locations in the cities. The problem is to find a plan with the least 
makespan that transports all packages to their destinations while satisfying all con-
straints on space and fuel in trucks. 

7.2 Competition participants 

Five planning systems participated in the temporal satisfaction track of IPC2008. 
Both source code and short description of planners are publicly available and can be 
found in [11]. Another planner was included into the comparison of results by competi-
tion organizers; it did not compete. The description of planners follows: 

 Base line planner. The planner is based on Metric-FF planning system for clas-
sical planning. Time annotation and action durations are removed in 
preprocessing step and a solution is temporally annotated (scheduled) in post-
processing. This is the non-competing planning system.  

 CPT3. This planner was originally intended to participate in optimalization 
track; since the optimalization track was cancelled, it competed in satisfaction 
track. We have introduced CPT planning system in Section 5.1, however we 
were not able to find neither any publications considering version CPT3 nor 
any description was provided in [11]. 

 DAE-1, DAE-2. These planning systems employ divide-and-evolve approach, 
where an evolutionary algorithm searches the space of possible decomposition 
of the planning problem into subproblems. Subproblems are solved with CPT 
planner. 

 SGPlan6. This planner decomposes the planning problem into subproblems, 
where dependencies between subproblems are handled as global constraints. 
Subproblems are solved with modified Metric-FF, which is further guided by 
minimizing violated global constraints. SGPlan6 was the winner of the tempo-
ral satisfaction track of IPC2008. 

 TFD. Temporal Fast Downward [39] planner extends Fast Downward [8] with 
time and numeric fluents. The planner performs heuristic search through time-
stamped states. TFD was the second (runner-up) in the temporal satisfaction 
track of IPC2008. 

 TLP-GP. The planner is based on simplified planning graph and disjunctive 
temporal problem. The search starts with building atemporal planning graph 
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until the goals are satisfied, then the planner searches backwards for a solution 
that would satisfy temporal constraints handled by disjunctive temporal prob-
lem solver. 

7.3 Testing environment 

We follow the testing scheme of IPC2008. Each planning system was limited by 30 
minutes of total processing-time per single planning problem. The processing time was 
a sum over the time consumed by all logical cores of processor; hence using parallel 
computation did not bring any benefit. All participating planners were limited to 2GB 
of internal memory and run on computer with CPU Intel Core 2 Quad Xeon 2.66GHz 
and 8MB L2 cache. We employ the same settings, although our testing configuration is 
inferior with CPU Intel Dual-core 2.5GHz and 2MB L2 cache.  

We have named the implementation of our planning system “Filuta”. In the follow-
ing figures we provide results for both single-shot run, denoted as Filuta1, and for 
randomize and restart approach, denoted as FilutaRR. For Filuta1 we provide runtimes 
on our testing system, FilutaRR was run for 30 minutes per planning problem. We do not 
include the time needed for translating planning problems into our representation and 
time consumed by the preprocessing step; both were negligible. 

All plans produced by Filuta were successfully validated by PDDL validation tool 
VAL [40]. 
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7.4 Results 

In this section we present and discuss the results of our planning system. 

 

 

Figure 7.1: Comparison of makespan of the solutions produced by the planning systems in elevators 
domain. 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 5 10 15 20 25 30 35

elevators domain ‐ 30 problem instances ‐makespan

Base DAE1 DAE2 SGPlan6 TFD FilutaRR Filuta1



72 
 

 

Figure 7.2: Comparison of makespan of solutions produced by the planning systems in transport domain.  

 

Figure 7.3: Comparison of makespan of solutions produced by the planning systems in openstacks do-
main.  

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25 30 35

transport domain ‐ 30 problem instances ‐makespan

Base SGPlan6 TFD FilutaRR Filuta1

0

200

400

600

800

1000

1200

1400

1600

0 5 10 15 20 25 30 35

openstacks domain ‐ 30 problem instances ‐makespan

Base DAE1 DAE2 SGPlan6 TFD FilutaRR



73 
 

elevators domain ‐ 30 problem instances ‐ makespan 

   Base  DAE1  DAE2  SGPlan6  TFD  FilutaRR  Filuta1  Filuta1 – runtime (sec) 

1  210  83  71  162  144  84  132  0.031 

2  122  71  69  121  144  91  96  0.001 

3  66  64  47  80  54  46  54  0.016 

4  163  101  205  156  97  129  0.047 

5  110  72  151  92  58  70  0.031 

6  248  109  211  316  110  169  0.062 

7  144  226  257  90  98  0.156 

8  185  171  268  267  115  124  0.047 

9  216  141  111  73  111  0.094 

10  397  333  411  138  261  0.297 

11  305  260  380  162  228  0.125 

12  438  456  617  218  310  0.361 

13  466  707  537  186  285  0.578 

14  505  523  882  233  330  0.751 

15  812  688  255  403  1.375 

16  456  420  225  292  1.453 

17  488  659  1074 290  414  2.502 

18  788  751  1273 416  601  3.532 

19  866  1425  539  906  51.579 

20  628  841  342  410  3.828 

21  629  757  674  184  236  2.172 

22  400  570  419  244  280  6.109 

23  477  796  279  397  5.422 

24  475  939  209  345  14.751 

25  776  1407  335  545  21.907 

26  736  1043  387  464  29.281 

27  868  1145  387  449  47.109 

28  862  1607  433  471  26.546 

29  877  1244  382  514  73.625 

30  1237        1762     488  532  78.485 

 
Figure 7.4: Makespan of plans produced for problem instances from the elevators domain. The lowest 

makespan for each instance is bold. 
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transport domain ‐ 30 problem instance ‐ makespan 

   Base  SGPlan6  TFD  FilutaRR  Filuta1  Filuta1 – runtime (sec) 

1  52  52  52  52  52  0.031 

2  217  217  241  126  173  0.031 

3  243  432  669  189  295  0.468 

4     845  256  405  0.375 

5     359  242  335  0.454 

6     965  256  423  3.4693 

7     418  474  18.828 

8     382  449  127.656 

9     288  447  18.406 

10     577  673  150.734 

11  629  629  549  332  332  0.001 

12  817  817  1009  490  490  0.016 

13  1216  650  3383  386  420  0.157 

14  2059  620  768  5.016 

15     2249  807  973  7.828 

16     1875  840  840  1194.719 

17     3331  804  971  43.828 

18     1194  1429  207.343 

19     1341  1341  1647.611 

20     6362    

21  113  113  161  69  69  0.001 

22  238  238    

23  423  642    

24  1019  1116    

25  1404  201  201  1.875 

26     234  241  8.437 

27     244  364  24.516 

28     308  348  49.251 

29     307  380  70.062 

30           362  394  139.453 

 
Figure 7.5: Makespan of plans produced for problem instances from the transport domain. Lowest 

makespan for each instance is bold. 
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openstacks domain ‐ 30 problems ‐ makespan 

   Base  DAE1  DAE2  SGPlan6  TFD  FilutaRR 

1  87  85  84  87  145  88 

2  157  145  168  406  121 

3  148  87  85  170  307  92 

4  148  87  87  131  258  94 

5  116  115  308  98 

6  179  195  291  118 

7  112  194  102  168  422  113 

8  169  139  178  454  116 

9  124  199  483  109 

10  214  214  634  119 

11  176  201  508  112 

12  139  368  667    

13  223  166  318  798    

14  139  265  488    

15  135  279  769    

16  120  235  288  753    

17  195  396  881    

18  281  462  295  974    

19  195  305  963    

20  253  397  966    

21  259  408  1025    

22  197  432  876    

23  207  566  979    

24  286  173  493  1348    

25  211  441  1202    

26  243  446  1181    

27  261  312  902    

28  216  507  1412    

29  218  436  1375    

30  265        387  1424    

 
Figure 7.6: Makespans of plans produced for problem instances from the openstacks domain. The lowest 

makespan for each instance is bold. 

 

7.4.1 Discussion 

In elevators domain we can see that the suboptimal approach of our planning sys-
tem misses better solutions and finds plans with worse makespan than DEA1 and 
DEA2 planners in small instances. On larger instances Filuta1 consistently produces 
solutions with better makespan than other planners and further improvement by Filu-
taRR is significant. 

The transport domain is significantly more constrained than the elevators domain; 
both truck capacity and truck fuel plays a role, additionally roads between locations are 
modelled separately for each direction, e.g. driving one direction may require more fuel 
than the other direction for the same road. The trucks can consequently get stuck with-
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out fuel at some location. Filuta takes the lead with better quality of produced plans for 
most of the instances; additionally it solved 10 instances unsolved by any other planner. 
However Filuta is not able to solve 3 instances solved by other planners (22-24); these 
instances contain a “trap” for our approach to decomposition into subproblems. The 
basic idea of this trap is that if there was a truck on the hill which could transport any 
package to its destination requiring only a small amount time, our search algorithm will 
use this truck. However the fuel of the truck is severely limited and if the truck drives 
from the hill, it won’t be able to ever get back on the hill, since it requires too much 
fuel. Consequently our search at some point uses the truck to transport some package 
and since the truck being on the hill is also a goal and our search algorithm does not 
backtrack over the solutions of the subproblems, the search algorithm gets trapped. 
Filuta was able to solve the problem instance 20 with the solution’s makespan 1341; 
however it took about one hour to find the solution. 

The openstacks domain differs from previous ones significantly. Our representation 
of this domain contains single resource instance of reservoir that represents the number 
of open stacks. Since we use the least commitment principle when searching for the sets 
of resolvers for reservoirs, the generation of minimal critical sets becomes a bottleneck 
of the search. We were able to find solutions only for 11 instances, for larger instances 
Filuta consumes more than 30 minutes. 

7.5 Implementation notes 

We have implemented our planning system in Java programming language. Most 
techniques we have implemented directly correspond to how we have described them in 
this thesis. However some implementation decision we have made are worth mention-
ing. 

Initially we intended to use some CSP library for managing subproblems occurring 
in our planning system, but we have turned to own implementation allowing us to get 
more control over the propagation. 

Since our planning system needs to backtrack over constraint propagation, we 
could either implement temporal network as a backtrack-able structure or keep creating 
new copies of the network for each state of the search. We expected that maintaining 
minimal temporal network will be costly, therefore we have tried to minimise overhead 
of propagation and it led us to the second option.  

For a minimal temporal network we need to carry solely the intervals correspond-
ing to constraints. If there is n time points in a network we need to carry n2 intervals. 
Using symmetry of the constraints and implicit constraints we can reduce the number of 
intervals to n2/2 – n; consequently we can store the intervals in one array using some 
predefined ordering, e.g. [t2-t1, t3-t2, t3-t1, ...] where ti is a time point. Copying the tem-
poral network then involves only quick memory copy of the array. Additionally we use 
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the copying step to reserve space for constraints on time points that may be added in the 
next state of the search algorithm; the amount of space needed can be predicted based 
on the search procedure, e.g. way_search can introduce at most two new time points. 

Finally we have performed profiling of our implementation for several smaller 
problems from transport and elevators domain: 

 89% of runtime is spent performing queries on the simple temporal network, 

 7% of runtime is spent by copying the simple temporal network, and 

 3% of runtime is spent by the resource management. 

The 96% spent by maintaining and copying the temporal network is the price we 
pay for having the temporal network minimal; the most expensive operation is the con-
straint propagation. However minimality of the network allows us to prune suboptimal 
states early according to eval function and constant access to constraints between time 
points is important for resource management and queries upon the temporal databases. 
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8 Conclusions 

In this thesis we have focused on automated planning with time and resource con-
straints. In the second chapter we have concerned ourselves solely with planning and 
introduced principal representation approaches, search techniques, and concepts of 
beneficial explorations of the structure of planning problems; since the amount of pub-
lished materials for classical planning is enormous, we have mainly focused on the 
cornerstone principles of such structure explorations and mostly left aside resulting 
applications for the search guidance. A review of the current state-of-the-art heuristics 
for classical planning can be found e.g. in [41]. We have discussed introduction of time 
into planning in the third chapter and focused primarily on the simple temporal prob-
lem. In the fourth chapter we have introduced resources, provided a categorization of 
resources based on their behaviour in a planning system, and discussed the relation of 
resources in planning and resources in scheduling. Consequently in the fifth chapter we 
have introduced three planning systems that integrate both planning and scheduling into 
one homogenous system. 

The practical part of our work involved development of our own planning system 
with time and resources. We have described the developed system in the sixth chapter 
and provided our results for a set of planning problems with time and resources from 
IPC2008 in the seventh chapter. 

We have discovered that compared to competition participants our planning system 
provides significant improvements in quality of plans and even solves problem in-
stances unsolved by any other planning system in transport and elevators domains. 
However the management of resources in our planning system turned out to be intrac-
table when the resource reasoning in a planning problem is concentrated into one 
reservoir instance, which was the case of openstacks domain; the intractability comes 
from the exponential growth of the number of minimal critical sets that are generated 
for resolving a reservoir resource conflict. Additionally our system failed to find solu-
tions in three instances of transport domain. 

The planning system we have developed is incomplete and suboptimal; our search 
algorithm may not find a solution even if one exists and it does not guarantee that the 
solution it finds is optimal. These attributes are common among heuristic planning sys-
tems; except for CPT3, which is an optimal planner, all planning systems that 
participated in the temporal satisfaction track of IPC2008 were incomplete. 

Our planning system is build upon a broad range of published techniques, some of 
which we have adapted, and from which we have drawn the inspiration; it includes AI 
planning, temporal reasoning, resource reasoning, constraint-based scheduling, con-
straint programming and graph theory. The key elements that define our planning 
system is the incremental maintenance of the simple temporal network, strong attach-
ment of the search algorithm to the domain transition graphs and the division of the 
planning problem into subproblems for each goal. The planning system is constructed 
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to be modular and extensible by separating resource reasoning, temporal reasoning, 
temporal databases and the search algorithm. 

The main contribution of this thesis is the developed planning system.  

8.1 Future work 

The future works consists of extensions and algorithmic improvements. 

The extensions could focus on: 

 Covering other features of the Problem Domain Definition Language; this in-
cludes processes, intermediate goals, ADL, metric time, time constraints, soft 
constraints, and numeric fluents that are not covered at the current stage. 

 Enriching the search space by allowing a removal of the actions from the par-
tial plans. 

 The integration of the state-of-the-art heuristics. 

 The reduction of the search space by integration of landmarks upon the domain 
transition graphs. 

The algorithmic improvements could focus on: 

 Improving the efficiency of the incremental maintenance of the simple tempo-
ral network. Delayed propagation, the structure of the sequences of queries 
upon the network, and the backtrack-able network could be explored. 

 Improving the efficiency of the resource manager. This may include a relaxa-
tion of the resource reasoning and an integration of constraint satisfaction 
techniques. 

 The optimalization of the implementation; we also expect an improvement of 
the runtime performance from porting the code into C++ language. 
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Appendix: CD contents 

The compact disk included with the thesis has the following structure: 

 Diploma.pdf – the electronic version of this thesis. 

 readme.txt – usage instructions for our planner; notes on usage of the transla-
tion module from TFD; notes on compilation of VAL. 

 Filuta – our planning system. 

o src – source codes of our planning system. 

o bin – compiled version of our planning system (java bytecode). 

o doc – documentation of our implementation. 

 tools – utilities needed for problem translation and plan validation. 

o TFD – Temporal Fast Downward, distributed under GNU/GPL licence 
version 3. 

 translate – the translation module we have used for translating PDDL 
formulations into state variable formulations (written in Python). 

o VAL – PDDL validator, version 4.2.04. 

 domains – problem definitions and our results. 

o planner.log – Filuta’s log from a 30 hours long solving of the problem in-
stances. 

o elevators 

 01-30 – problem instances. 

 domain.pddl – the domain for the problem instance. 

 problem.pddl – the problem instance. 

 output.sas – translation of the problem instance into SAS+ representa-
tion. 

 variables.groups – translated state variables. 

 plan0-N – a sequence of improving solutions of the problem instance 
as produced by FilutaRR. 

 final_plan – the best solution found by our planning system for this 
problem instance. 

 validation_report.(latex/pdf/txt) – validation report for the final_plan 
produced by  PDDL validator VAL. 

o transport 

 01-30 – problem instances. 

o openstacks 

 01-30 – problem instances. 
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