
1

Roman Barták
Charles University, Prague (CZ)

roman.bartak@mff.cuni.cz

Constraint SatisfactionConstraint Satisfaction
for Planning & Schedulingfor Planning & Scheduling

Constraint Satisfaction for Planning and Scheduling 2

What?What?

What is the topic of the tutorial?
constraint satisfaction techniques useful for P&S

What is constraint satisfaction?
technology for modeling and solving
combinatorial optimization problems

What is the difference from AIPS02
tutorial?

focus on constraint satisfaction in general
more explanations but less broad

2

Constraint Satisfaction for Planning and Scheduling 3

Why?Why?
Why you should look at constraint
satisfaction?

powerful solving technology
planning and scheduling are coming together
and constraint satisfaction may serve as bridge

Why you should understand insides of
constraint satisfaction algorithms?

better exploitation of the technology
design of better (solvable) constraint models

Constraint Satisfaction for Planning and Scheduling 4

Tutorial outlineTutorial outline
Constraint satisfaction in a nutshell

domain filtering and local consistencies

search techniques

extensions of a basic constraint satisfaction problem

Constraints for planning and scheduling
constraint models for planning and scheduling
special filtering algorithms (global constraints) for P&S
branching schemes for planning and scheduling

Conclusions
a short survey on constraint solvers

summary

3

Constraint satisfaction
in a nutshell

Constraint Satisfaction for Planning and Scheduling 6

Constraint technologyConstraint technology
based on declarative problem description via:

variables with domains (sets of possible values)
e.g. start of activity with time windows
constraints restricting combinations of variables
e.g. endA < startB

constraint optimization via objective function
e.g. minimize makespan

Why to use constraint technology?
understandable
open and extendible
proof of concept

4

Constraint Satisfaction for Planning and Scheduling 7

CSPCSP
Constraint satisfaction problem consists of:

a finite set of variables
domains - a finite set of values for each variable
a finite set of constraints

constraint is an arbitrary relation over the set of
variables
can be defined extensionally (a set of compatible
tuples) or intentionally (formula)

A solution to CSP is a complete assignment of
variables satisfying all the constraints.

Constraint Satisfaction for Planning and Scheduling 8

today reality

a Star Trek view

CSP as a Holly GrailCSP as a Holly Grail
> Computer, solve the SEND, MORE, MONEY problem!

> Here you are. The solution is
[9,5,6,7]+[1,0,8,5]=[1,0,6,5,2]

> Sol=[S,E,N,D,M,O,R,Y],
domain([E,N,D,O,R,Y],0,9), domain([S,M],1,9),

1000*S + 100*E + 10*N + D +
1000*M + 100*O + 10*R + E #=

10000*M + 1000*O + 100*N + 10*E + Y,
all_different(Sol),
labeling([ff],Sol).

> Sol = [9,5,6,7,1,0,8,2]

5

Constraint Satisfaction for Planning and Scheduling 9

Using CSPUsing CSP
To solve the problem it is enough to design a constraint
model, that is to decide about the variables, their
domains, and constraints!

Example:
Let W be the width of a rectangular area A and H be its
height. The task is to place N rectangles of height 1 but of
different widths into the area A in such a way that no two
rectangles overlap. Let wi be the width of the rectangle i.
Constraint model:

variable Ri describes the row of the rectangle i
Ri in {1,…,H}

variable Ci describes the first column occupied by the rectangle i
Ci in {1,…,W- wi+1}

non-overlap constraint
∀i≠j (Ri=Rj) ⇒ (Ci + wi < Cj ∨ Cj + wj < Ci)

4

3

10

9 7

5

8

1

6 2

1

2

3

4

5

6

Rudová (2002)

Constraint Satisfaction for Planning and Scheduling 10

Two or more?Two or more?
Binary constraint satisfaction

only binary constraints
any CSP is convertible to a binary CSP

dual encoding (Stergiou & Walsh, 1990)
swapping the role of variables and constraints

Boolean constraint satisfaction
only Boolean (two valued) domains
any CSP is convertible to a Boolean CSP

SAT encoding
Boolean variable indicates whether a given value is
assigned to the variable

6

Constraint satisfaction

Consistency techniques

Constraint Satisfaction for Planning and Scheduling 12

Domain filteringDomain filtering
Example:

Da={1,2}, Db={1,2,3}
a<b
Value 1 can be safely removed from Db.

Constraints are used actively to remove
inconsistencies from the problem.

inconsistency = value that cannot be in any
solution

This is realized via a procedure REVISE that
is attached to each constraint.

7

Constraint Satisfaction for Planning and Scheduling 13

Arc consistencyArc consistency

We say that a constraint is arc consistent
(AC) if for any value of the variable in the
constraint there exists a value for the other
variable(s) in such a way that the constraint
is satisfied (we say that the value is
supported).

A CSP is arc consistent if all the
constraints are arc consistent.

Constraint Satisfaction for Planning and Scheduling 14

Making problems ACMaking problems AC
How to establish arc consistency in CSP?
Every constraint must be revised!

Example: X in [1,..,6], Y in [1,..,6], Z in [1,..,6], X<Y, Z<X-2

Doing revision of every constraint just once is not
enough!

Revisions must be repeated until any domain is
changed (AC-1).

X in [1,..,6]
Y in [1,..,6]
Z in [1,..,6]

X in [1,..,6]
Y in [1,..,6]
Z in [1,..,6]

X in [1,..,5]
Y in [2,..,6]
Z in [1,..,6]

X in [1,..,5]
Y in [2,..,6]
Z in [1,..,6]

X<Y
X in [4,5]
Y in [2,..,6]
Z in [1,2]

X in [4,5]
Y in [2,..,6]
Z in [1,2]

Z<X-2
X in [4,5]
Y in [5,6]
Z in [1,2]

X in [4,5]
Y in [5,6]
Z in [1,2]

X<Y

8

Constraint Satisfaction for Planning and Scheduling 15

Algorithm ACAlgorithm AC--33
Uses a queue of constraints that should be revised
When a domain of variable is changed, only the constraints
over this variable are added back to the queue for re-
revision.

procedure AC-3(V,D,C)
Q ← C
while non-empty Q do

select c from Q
D’ ← c.REVISE(D)
if any domain in D’ is empty then return (fail,D’)
Q ← Q ∪ {c’∈C | ∃x∈var(c’) D’x≠Dx} – {c}
D ← D’

end while
return (true,D)

end AC-3

Mackworth (1977)

Constraint Satisfaction for Planning and Scheduling 16

ACAC--3 in practice3 in practice
Uses a queue of variables with changed domains.

Users may specify for each constraint when the constraint revision
should be done depending on the domain change.

The algorithm is sometimes called AC-8.

procedure AC-8(V,D,C)
Q ← V
while non-empty Q do

select v from Q
for c∈C such that v is constrained by c do

D’ ← c.REVISE(D)
if any domain in D’ is empty then return (fail,D’)
Q ← Q ∪ {u∈V | D’u≠Du}
D ← D’

end for
end while
return (true,D)

end AC-8

9

Constraint Satisfaction for Planning and Scheduling 17

Other AC algorithmsOther AC algorithms
AC-4 (Mohr & Henderson, 1986)

computes sets of supporting values
optimal worst-case time complexity O(ed2)

AC-5 (Van Hentenryck, Deville, Teng, 1992)
generic AC algorithm covering both AC-4 and AC-3

AC-6 (Bessière, 1994)
improves AC-4 by remembering just one support

AC-7 (Bessière, Freuder, Régin, 1999)
improves AC-6 by exploiting symmetry of the constraint

AC-2000 (Bessière & Régin, 2001)
an adaptive version of AC-3 that either looks for a support or
propagates deletions

AC-2001 (Bessière & Régin, 2001)
improvement of AC-3 to get optimality (queue of variables)

AC-3.1 (Zhang & Yap, 2001)
improvement of AC-3 to get optimality (queue of constraints)

…

Constraint Satisfaction for Planning and Scheduling 18

Path consistencyPath consistency
Arc consistency does not detect all inconsistencies!

Let us look at several constraints together!

The path (V0,V1,…, Vm) is path consistent iff for every
pair of values x∈D0 a y∈Dm satisfying all the binary
constraints on V0,Vm there exists an assignment of variables
V1,…,Vm-1 such that all the binary constraints between the
neighboring variables Vi,Vi+1 are satisfied.
CSP is path consistent iff every path is consistent.

Some notes:
only the constraints between the neighboring
variables must be satisfied
it is enough to explore paths of length 2 (Montanary,
1974)

X

Y
Z

X≠ZX≠Y

Y≠Z

{1,2}

{1,2} {1,2}

10

Constraint Satisfaction for Planning and Scheduling 19

Path revisionPath revision
Constraints represented extensionally via matrixes.
Path consistency is realized via matrix operations

Example:
A,B,C in {1,2,3}, B>1
A<C, A=B, B>C-2 A<C

B>C-2
A=B

B>1

C

A

& * *
011
001
000

100
010
001

000
010
001

110
111
111

=
000
001
000

Constraint Satisfaction for Planning and Scheduling 20

Algorithm PCAlgorithm PC--11
How to make the path (i,k,j) consistent?

Rij ← Rij & (Rik * Rkk * Rkj)
How to make a CSP path consistent?

Repeated revisions of paths (of length 2) while any domain changes.

procedure PC-1(Vars,Constraints)
n ← |Vars|, Yn ← Constraints
repeat

Y0 ← Yn

for k = 1 to n do
for i = 1 to n do

for j = 1 to n do
Yk

ij ← Yk-1
ij & (Yk-1

ik * Yk-1
kk * Yk-1

kj)
until Yn=Y0

Constraints ← Y0

end PC-1

Mackworth (1977)

11

Constraint Satisfaction for Planning and Scheduling 21

Other PC algorithmsOther PC algorithms
PC-2 (Mackworth, 1977)

revises only paths (i,k,j) for i≤j and after change, only
relevant paths revised

PC-3 (Mohr & Henderson, 1986)
based on principles of AC-4 (remembering supports),
but it is not sound (it can delete a consistent value)

PC-4 (Han & Lee, 1988)
a corrected version of PC-3 (incompatible pairs are
deleted)

PC-5 (Singh, 1995)
based on principles of AC-6 (remember just one
support)

Constraint Satisfaction for Planning and Scheduling 22

Think globallyThink globally
CSP describes the problem locallylocally:

the constraints restrict small sets of variables
+ heterogeneous real-life constraints
- missing global view

weaker domain filtering

Global constraintsGlobal constraints
global reasoning over a local sub-problem
using semantic information to improve time efficiency or
pruning power

Example:
local (arc) consistency
deduces no pruning
but some values can be
removed

a b

a b

a b c

≠

≠

≠

X1

X2

X3XX

12

Constraint Satisfaction for Planning and Scheduling 23

a set of binary inequality constraints among all variables
X1 ≠ X2, X1 ≠ X3, …, Xk-1 ≠ Xk

all_different({X1,…,Xk}) = {(d1,…,dk) | ∀i di∈Di & ∀i≠j di≠dj}
better pruning based on matching theory over bipartite graphs

Initialization:
1. compute maximum matching
2. remove all edges that do not

belong to any maximum matching

Propagation of deletions (X1≠a):
1. remove discharged edges
2. compute new maximum matching
3. remove all edges that do not

belong to any maximum matching

Inside allInside all--differentdifferent

a

b

c

X1

X2

X3

××

X1

X2

X3

a

b

c

×

×

Régin (1994)

Constraint Satisfaction for Planning and Scheduling 24

Singleton consistencSingleton consistencyy
Can we strengthen any consistency technique?
YES! Let’s assign a value and make the rest of the
problem consistent.

CSP P is singleton A-consistent for some notion
of A-consistency iff for every value h of any variable
X the problem P|X=h| is A-consistent.

Features:
+we remove only values from variable’s domain

+easy implementation (meta-programming)

– could be slow (be careful when using SC)

Prosser et al. (2000)

13

Constraint satisfaction

Search techniques

Constraint Satisfaction for Planning and Scheduling 26

Search / LabelingSearch / Labeling
Consistency techniques are (usually) incomplete.

We need a search algorithm to resolve the rest!

LabelingLabeling
depth-first search

assign a value to the variable
propagate = make the problem
locally consistent
backtrack upon failure

X in 1..5 ≈ X=1 ∨ X=2 ∨ X=3 ∨ X=4 ∨ X=5

In general, search algorithm resolves remaining disjunctions!
X=1 ∨ X≠1 (standard labeling)
X<3 ∨ X≥3 (domain splitting)
X<Y ∨ X≥Y (variable ordering)

14

Constraint Satisfaction for Planning and Scheduling 27

Labeling skeletonLabeling skeleton
Search is combined with consistency
techniques that prune the search space
Look-ahead technique
procedure labeling(V,D,C)

if all variables from V are assigned then return V
select not-yet assigned variable x from V
for each value v from Dx do

(TestOK,D’) ← consistent(V,D,C∪{x=v})
if TestOK=true then R ← labeling(V,D’,C)
if R ≠ fail then return R

end for
return fail

end labeling

Constraint Satisfaction for Planning and Scheduling 28

Branching schemesBranching schemes
What variable should be assigned first?

first-fail principle
prefer the variable whose instantiation will lead to a failure
with the highest probability
variables with the smallest domain first
most constrained variables first

defines the shape of the search tree

What value should be tried first?
succeed-first principle

prefer the values that might belong to the solution with the
highest probability
values with more supporters in other variables
usually problem dependent

defines the order of branches to be explored

15

Constraint Satisfaction for Planning and Scheduling 29

Systematic searchSystematic search
Chronological backtracking

upon failure backtrack to last but one variable

Backjumping (Gaschnig, 1979)
upon failure jump back to a conflicting variable

Dynamic backtracking (Ginsberg, 1993)
upon failure un-assign only the conflicting
variable

Backmarking (Haralick & Elliot, 1980)
remember conflicts (no-goods) and use them in
subsequent search

Constraint Satisfaction for Planning and Scheduling 30

Incomplete searchIncomplete search
A cutoff limit to stop exploring a (sub-)tree

some branches are skipped → incomplete search
When no solution found, restart with enlarged cutoff limit.

Bounded Backtrack Search (Harvey, 1995)
restricted number of backtracks

Depth-bounded Backtrack Search (Cheadle et al., 2003)
restricted depth where alternatives are explored

Iterative Broadening (Ginsberg and Harvey, 1990)
restricted breadth in each node
still exponential!

Credit Search (Cheadle et al., 2003)
limited credit for exploring alternatives
credit is split among the alternatives

16

Constraint Satisfaction for Planning and Scheduling 31

Heuristics in searchHeuristics in search
Observation 1:
The search space for real-life problems is so huge that it cannot be
fully explored.

Heuristics - a guide of search
they recommend a value for assignment
quite often lead to a solution

What to do upon a failure of the heuristic?
BT cares about the end of search (a bottom part of the search tree)
so it rather repairs later assignments than the earliest ones
thus BT assumes that the heuristic guides it well in the top part

Observation 2:
The heuristics are less reliable in the earlier parts of the search
tree (as search proceeds, more information is available).

Observation 3:
The number of heuristic violations is usually small.

Constraint Satisfaction for Planning and Scheduling 32

DiscrepanciesDiscrepancies
Discrepancy

= the heuristic is not followed

Basic principles of discrepancy search:
change the order of branches to be explored

prefer branches with less discrepancies

prefer branches with earlier discrepancies

heuristic = go left

heuristic = go left

is before

is before

17

Constraint Satisfaction for Planning and Scheduling 33

Limited Discrepancy Search (Harvey & Ginsberg, 1995)
restricts a maximal number of discrepancies in the iteration

Improved LDS (Korf, 1996)
restricts a given number of discrepancies in the iteration

Depth-bounded Discrepancy Search (Walsh, 1997)
restricts discrepancies till a given depth in the iteration

…

Discrepancy searchDiscrepancy search

1 2345 678

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

910

* heuristic = go left

Constraint Satisfaction for Planning and Scheduling 34

18

Constraint satisfaction

Extensions

Constraint Satisfaction for Planning and Scheduling 36

Constraint optimizationConstraint optimization
Constraint optimization problem (COP)
= CSP + objective function
Objective function is encoded in a constraint.

Branch and bound technique
find a complete assignment (defines a new

bound)
store the assignment
update bound (post the constraint that restricts

the objective function to be better than a
given bound which causes failure)

continue in search (until total failure)
restore the best assignment

19

Constraint Satisfaction for Planning and Scheduling 37

Soft problemsSoft problems
Hard constraints express restrictions.
Soft constraints express preferences.
Maximizing the number of satisfied soft constraints
Can be solved via constraint optimization

Soft constraints are encoded into an objective function

Special frameworks for soft constraints
Constraint hierarchies (Borning et al., 1987)

symbolic preferences assigned to constraints

Semiring-based CSP (Bistarelli, Montanary, and Rossi, 1997)
semiring values assigned to tuples (how well/badly a tuple
satisfies the constraint)
soft constraint propagation

Constraint Satisfaction for Planning and Scheduling 38

Dynamic problemsDynamic problems
Internal dynamics (Mittal & Falkenhainer, 1990)

planning, configuration
variables can be active or inactive, only active variables are
instantiated
activation (conditional) constraints

cond(x1,…, xn) → activate(xj)
solved like a standard CSP (a special value in the domain to denote
inactive variables)

External dynamics (Dechter & Dechter, 1988)
on-line systems
sequence of static CSPs, where each CSP is a result of the
addition or retraction of a constraint in the preceding problem
Solving techniques:

reusing solutions
maintaining dynamic consistency (DnAC-4, DnAC-6, AC|DC).

20

Constraints for
planning and scheduling

Constraint Satisfaction for Planning and Scheduling 40

TerminologyTerminology

“The planning task is to find out a sequence
of actions that will transfer the initial state
of the world into a state where the desired
goal is satisfied“

“The scheduling task is to allocate known
activities to available resources and time
respecting capacity, precedence (and
other) constraints“

21

Constraint Satisfaction for Planning and Scheduling 41

Constraints and P&SConstraints and P&S
Scheduling problem is static
all activities are known

variables and constraints are know
standard CSP is applicable

Planning problem is internally dynamic
activities are unknown in advance

variables describing activities are unknown
Solution (Kautz & Selman, 1992):

finding a plan of a given length is a static
problem
standard CSP is applicable there!

Constraint Satisfaction for Planning and Scheduling 42

P&S via CSP?P&S via CSP?
Exploiting state of the art constraint solvers!

faster solver ⇒ faster planner

Constraint model is extendable!
it is possible immediately to add other variables and
constraints
modeling numerical variables, resource and precedence
constraints for planning
adding side constraints to base scheduling models

Scheduling algorithms encoded in the
filtering algorithms for constraints!

fast algorithms accessible to constraint models

22

Constraints in P&S

Constraint models

Constraint Satisfaction for Planning and Scheduling 44

Planning graphPlanning graph
Planning graph is a layered graph representing
STRIPS-like plans of a given length.
nodes = propositions + actions
Interchanging propositional and action layers

action is connected to its preconditions in the previous layer
and to its add effects in the next layer
delete effect is modeled via action mutex (actions cannot
deleting and adding the same effect cannot be active at the
same layer)
propositional mutexes generated from action mutexes
no-op actions (same pre-condition as the add effect)

propositional
layers

action layers

p1

p2

p3

p1

p2

p3

p4

a1

a2a2

a3

p1

p2

p3

p4

a1

a2

a3
only actions that
are applicable to
the initial state

all propositions
from the goal state
must be present

* no-ops and mutexes not displayed

Blum & Furst (1997)

23

Constraint Satisfaction for Planning and Scheduling 45

ActivityActivity--based modelbased model
Planning graph of a given length is a static
structure that can be encoded as a CSP.
Constraint technology is used for plan extraction.

CSP model:
Variables

propositional nodes Pj,m (proposition pj in layer m)
only propositional layers are indexed

Domain
activities that has a given proposition as an add effect
⊥ for inactive proposition

Constraints
connect add effects with preconditions
mutexes

Do & Kambhampati (2000)

Constraint Satisfaction for Planning and Scheduling 46

ActivityActivity--based modelbased model
ConstraintsConstraints

P4,m=a ⇒ P1,m-1≠⊥ & P2,m-1≠⊥ & P3,m-1≠⊥
action a has preconditions p1, p2, p3 and an add effect p4
the constraint is added for every add effect of a

Pi,m=⊥ ∨ Pj,m=⊥
propositional mutex between propositions pi and pj

Pi,m≠a ∨ Pj,m≠b
actions a and b are marked mutex and pi is added by a and pj is
added by b

Pi,k≠⊥
pi is a goal proposition and k is the index of the last layer

no parallel actions
maximally one action is assigned to variables in each layer

no void layers
at least one action different from a no-op action is assigned to
variables in a given layer

Do & Kambhampati (2000)

24

Constraint Satisfaction for Planning and Scheduling 47

Boolean modelBoolean model
Planning graph of a given length is a encoded
as a Boolean CSP.
Constraint technology is used for plan extraction.

CSP model:
Variables

Boolean variables for action nodes Aj,m and
propositional nodes Pj,n
all layers indexed continuously from 1
(odd numbers for action layers and even numbers for
propositional layers)

Domain
value true means that the action/proposition is active

Constraints
connect actions with preconditions and add effects
mutexes

Lopez & Bacchus (2003)

Constraint Satisfaction for Planning and Scheduling 48

Boolean modelBoolean model
ConstraintsConstraintsprecondition constraints

Ai,m+1 ⇒ Pj,m
pj is a precondition of action ai

next state constraints
Pi,m ⇔ (∨pi∈add(aj)

Aj,m-1) ∨ (Pi,m-2 & (∧ pi ∈del(a j)
¬Aj,m-1)))

pj is active if it is added by some action or if it is active in the previous
propositional layer and it is not deleted by any action
no-op actions are not used there.
Beware! The constraint allows the proposition to be both added and
deleted so mutexes are still necessary!

mutex constraints
¬Ai,m ∨ ¬Aj,m for mutex between actions ai and aj at layer m
¬Pi,n ∨ ¬Pj,n for mutex between propositions pi and pj at layer n

goals
Pi,k=true
pi is a goal proposition and k is the index of the last propositional layer

other constraints
no parallel actions – at most one action per layer is active
no void layers – at least one action per layer is active

Lopez & Bacchus (2003)

25

Constraint Satisfaction for Planning and Scheduling 49

Scheduling modelScheduling model
Scheduling problem is static so it can be directly
encoded as a CSP.
Constraint technology is used for full scheduling.

CSP model:
Variables

position of activity A in time and space
time allocation: start(A), [p(A), end(A)]
resource allocation: resource(A)

Domain
ready times and deadlines for the time variables
alternative resources for the resource variables

Constraints
sequencing and resource capacities

Constraint Satisfaction for Planning and Scheduling 50

Scheduling modelScheduling model
ConstraintsConstraints

Time relations
start(A)+p(A)=end(A)
sequencing

B<<A
end(B)≤start(A)

Resource capacity constraints
unary resource (activities cannot overlap)

A<<B ∨ B<<A
end(A)≤start(B) ∨ end(B)≤start(A)

BB

AA

26

Constraints in P&S

Filtering algorithms

Constraint Satisfaction for Planning and Scheduling 52

ResourcesResources
Resources are used in slightly different
meanings in planning and scheduling!
scheduling

resource
= a machine (space) for processing the activity

planning
resource
= consumed/produced material by the activity
resource in the scheduling sence is often
handled via logical precondition (e.g. hand is
free)

27

Constraint Satisfaction for Planning and Scheduling 53

Resource typesResource types
Unary resource

a single activity can be processed at given time

Cumulative resource
several activities can be processed in parallel
if capacity is not exceeded.

Producible/consumable resource
activity consumes/produces some quantity of
the resource
minimal capacity is requested (consumption)
and maximal capacity cannot be exceeded
(production)

Constraint Satisfaction for Planning and Scheduling 54

Unary resourcesUnary resources

Activities cannot overlap
We assume that activities are uninterruptible

uninterruptible activity occupies the resource
from its start till its completion

A simple model with disjunctive constraints
A<<B ∨ B<<A
end(A)≤start(B) ∨ end(B)≤start(A)

28

Constraint Satisfaction for Planning and Scheduling 55

What happens if activity A is not processed first?What happens if activity A is not processed first?

Not enough time for A, B, and C and thus A must be first!Not enough time for A, B, and C and thus A must be first!

4 16

7 15

6 16

Edge findingEdge finding

A (2)

B (4)

C (5)

A (2)
4 7

7 15

6 16
B (4)

C (5)

Baptiste & Le Pape (1996)

Constraint Satisfaction for Planning and Scheduling 56

Edge finding rulesEdge finding rules
Some definitions:

The rules:
min(start(Ω)) + p(Ω) + p(A) > max(end(Ω ∪ {A})) ⇒ A<<Ω
A<<Ω ⇒ end(A) ≤ min{ max(end(Ω')) - p(Ω') | Ω'⊆Ω }

In practice:
instead of Ω use so called task intervals [A,B]

{C | min(start(A)) ≤min(start(C)) & max(end(C))≤max(end(B))}
time complexity O(n3)

{ })(min))(min(

,)()(

Astartstart

App

ΩA

A

∈

Ω∈

=Ω

=Ω ∑ activities ofset a is Ω where

Baptiste & Le Pape (1996)

29

Constraint Satisfaction for Planning and Scheduling 57

NotNot--first/notfirst/not--lastlast
What happens if activity A is processed first?

Not enough time for B and C and thus A cannot be first!

4 16

7 15

6 16
A (2)

C (4)

B (5)

4 16

7 15

8 16
A (2)

C (4)

B (5)

Torres & Lopez (2000)

Constraint Satisfaction for Planning and Scheduling 58

NotNot--first/notfirst/not--last ruleslast rules

Not-first rules:
min(start(A)) + p(Ω) + p(A) > max(end(Ω)) ⇒ ¬ A<<Ω
¬ A<<Ω⇒ start(A) ≥ min{ end(B) | B∈Ω }

Not-last (symmetrical) rules:
min(start(Ω)) + p(Ω) + p(A) > max(end(A)) ⇒ ¬ Ω<<A
¬ Ω<<A ⇒ end(A) ≤ max{ start(B) | B∈Ω }

In practice:
it is possible to use selected sets Ω only
time complexity O(n2)

Torres & Lopez (2000)

30

Constraint Satisfaction for Planning and Scheduling 59

Cumulative resourcesCumulative resources
Each activity uses some capacity of
the resource – cap(A).
Activities can be processed in parallel if
a resource capacity is not exceeded.
Resource capacity may vary in time

modeled via fix capacity over time and fixed activities
consuming the resource until the requested capacity
level is reached

timeus
ed

 c
ap

ac
ity

fix capacity

fixed activites for making a
capacity profile

Constraint Satisfaction for Planning and Scheduling 60

Where is enough capacity for processing the activity?

How the aggregated demand is constructed?

timeus
ed

 c
ap

ac
ity

Aggregated demandsAggregated demands

resource capacity

aggregated demand

timeus
ed

 c
ap

ac
ity resource capacity

aggregated demand

activity must be
processed here

Baptiste et al. (2001)

31

Constraint Satisfaction for Planning and Scheduling 61

Timetable constraintTimetable constraint
How to ensure that capacity is not exceed
at any time point?*

Timetable for the activity A is a set of
Boolean variables X(A,t) indicating
whether A is processed in time t.

yMaxCapacitAcapt
ii AendtAstart

i ≤∀ ∑
≤≤)()(

)(

),()()(,

)(),(

tAXAendtAstartit

yMaxCapacitAcaptAXt

iii

A
ii

i

⇔≤≤∀

≤⋅∀ ∑

* discrete time is expected

Baptiste et al. (2001)

Constraint Satisfaction for Planning and Scheduling 62

Alternative resourcesAlternative resources
How to model alternative resources for a
given activity?
Use a duplicate activity for each resource.

duplicate activity participates in a respective resource
constraint but does not restrict other activities there

failure means removing the resource from the domain of
variable res(A)
deleting the resource from the domain of variable res(A)
means „deleting“ the respective duplicate activity

original activity participates in precedence constraints
(e.g. within a job)
restricted times of duplicate activities are propagated
to the original activity and vice versa.

32

Constraint Satisfaction for Planning and Scheduling 63

Relative orderingRelative ordering
When time is relative (ordering of activities)

then edge-finding and aggregated demand deduce nothing
We can still use information about ordering of

activities and resource production/consumption!

Example:
Reservoir: activities consume and supply items

A
-1 B

-1 C
-1

D
+1

Constraint Satisfaction for Planning and Scheduling 64

Resource profilesResource profiles
Activity A „produces“ prod(A) quantity:

positive number means production
negative number means consumption

Optimistic resource profile (orp)
maximal possible level of the resource when A is processed
activities known to be before A are assumed together with the
production activities that can be before A

orp(A) = InitLevel + prod(A) + ∑B<<A prod(B) + ∑B??A & prod(B)>0 prod(B)

Pesimistic resource profile (prp)
minimal possible level of the resource when A is processed
activities known to be before A are assumed together with the
consumption activities that can be before A

prp(A) = InitLevel + prod(A) + ∑B<<A prod(B) + ∑B??A & prod(B)<0 prod(B)

*B??A means that order of A and B is unknown yet

Cesta & Stella (1997)

33

Constraint Satisfaction for Planning and Scheduling 65

orporp filteringfiltering
orp(A) < MinLevel ⇒ fail

“despite the fact that all production is planned
before A, the minimal required level in the
resource is not reached”

orp(A) – prod(B) – ∑B<<C & C??A & prod(C)>0 prod(C) <
MinLevel ⇒ B<<A,
for any B such that B??A and prod(B)>0

“if production in B is planned after A and the
minimal required level in the resource is not
reached then B must be before A”

Cesta & Stella (1997)

Constraint Satisfaction for Planning and Scheduling 66

prpprp filteringfiltering
prp(A) > MaxLevel ⇒ fail

“despite the fact that all consumption is planned before
A, the maximal required level (resource capacity) in the
resource is exceeded”

prp(A) – prod(B) – ∑B<<C & C??A & prod(C)<0 prod(C) >
MaxLevel ⇒ B<<A,
for any B such that B??A and prod(B)<0

“if consumption in B is planned after A and the maximal
required level in the resource is exceeded then B must
be before A”

Cesta & Stella (1997)

34

Constraint Satisfaction for Planning and Scheduling 67

Temporal problemsTemporal problems
Simple temporal relations:

time(B)-time(A) ≤ dA,B

time(A)-time(B) ≤ dB,A

Solvable in polynomial time (Dechter et al., 1991)

Floyd-Warshall‘ algorithm for computing
shortest paths
A special version of path consistency

sometimes encoded in a global constraint

Constraint Satisfaction for Planning and Scheduling 68

35

Constraints in P&S

Search strategies

Constraint Satisfaction for Planning and Scheduling 70

Branching schemesBranching schemes
Branching = resolving disjunctions
Traditional scheduling approaches:

take critical decisions first
resolve bottlenecks …
defines the shape of the search tree
recall the first-fail principle

prefer an alternative leaving more flexibility
defines order of branches to be explored
recall the succeed-first principle

How to describe criticality and flexibility formally?

36

Constraint Satisfaction for Planning and Scheduling 71

SlackSlack
Slack is a formal description of flexibility

Slack for a given order of two activities
„free time for shifting the activities“

slack(A<<B) = max(end(B))-min(start(A))-p({A,B})

Slack for two activities
slack({A,B}) = max{slack(A<<B),slack(B<<A)}

Slack for a group of activities
slack(Ω) = max(end(Ω)) - min(start(Ω)) - p(Ω)

A

B
slack for A<<B slack for A<<B

Smith and Cheng (1993)

Constraint Satisfaction for Planning and Scheduling 72

Order branchingOrder branching

A<<B ∨ ¬A<<B
Which activities should be ordered first?

the most critical pair (first-fail)
the pair with the minimal slack({A,B})

What order should be selected?
the most flexible order (succeed-first)
the order with the maximal slack(A??B)

O(n2) choice points

Smith and Cheng (1993)

37

Constraint Satisfaction for Planning and Scheduling 73

First/last branchingFirst/last branching

(A<<Ω ∨ ¬A<<Ω) or (Ω<<A ∨ ¬ Ω<<A)
Should we look for first or last activity?

select a smaller set among possible first or
possible last activities (first-fail)

What activity should be selected?
If first activity is being selected then the activity
with the smallest min(start(A)) is preferred.
If last activity is being selected then the activity
with the largest max(end(A)) is preferred.

O(n) choice points

Baptiste et al. (1995)

Constraint Satisfaction for Planning and Scheduling 74

Resource slackResource slack
Resource slack is defined as a slack of the
set of activities processed by the resource.

How to use a resource slack?
choosing a resource on which the activities
will be ordered first

resource with a minimal slack (bottleneck) preferred

choosing a resource on which the activity will
be allocated

resource with a maximal slack (flexibility) preferred

38

Conclusions

Constraint Satisfaction for Planning and Scheduling 76

Constraint solversConstraint solvers
It is not necessary to program all the presented
techniques from scratch!
Use existing constraint solvers (packages)!

provide implementation of data structures for
modelling variables‘ domains and constraints
provide a basic consistency framework (AC-3)
provide filtering algorithms for many constraints
(including global constraints)
provide basic search strategies
usually extendible (new filtering algorithms, new
search strategies)

39

Constraint Satisfaction for Planning and Scheduling 77

SICStusSICStus PrologProlog
www.sics.se/sicstus

a strong Prolog system with libraries for solving
constraints (FD, Boolean, Real)
arithmetical, logical, and some global constraints

an interface for defining new filtering algorithms

depth-first search with customizable value and
variable selection (also optimization)

it is possible to use Prolog backtracking

support for scheduling
constraints for unary and cumulative resources
first/last branching scheme

Constraint Satisfaction for Planning and Scheduling 78

ECLiPSeECLiPSe
www.icparc.ic.ac.uk/eclipse

a Prolog system with libraries for solving
constraints (FD, Real, Sets)
integration with OR packages (CPLEX, XPRESS-MP)
arithmetical, logical, and some global constraints

an interface for defining new filtering algorithms
Prolog depth-first search (also optimisation)
a repair library for implementing local search
techniques

support for scheduling
constraints for unary and cumulative resources
„probing“ using a linear solver
Gantt chart and network viewers

40

Constraint Satisfaction for Planning and Scheduling 79

CHIPCHIP
www.cosytec.com

a constraint solver in C with Prolog as a host
language, also available as C and C++ libraries
popularized the concept of global constraints

different, order, resource, tour, dependency

it is hard to go beyond the existing constraints
support for scheduling

constraints for unary and cumulative resources
a precedence constraint (several cumulatives with the
precedence graph)

Constraint Satisfaction for Planning and Scheduling 80

ILOGILOG
www.ilog.com/products

the largest family of optimisation products as C++
(Java) libraries
ILOG Solver provides basic constraint satisfaction
functionality
ILOG Scheduler is an add-on to the Solver with
classes for scheduling objects

activities
state, cumulative, unary, energetic resources;
reservoirs

alternative resources

resource, precedence, and bound constraints

41

Constraint Satisfaction for Planning and Scheduling 81

MozartMozart
www.mozart-oz.org

a self contained development platform based on
the Oz language
mixing logic, constraint, object-oriented,
concurrent, and multi-paradigm programming

support for scheduling
constraints for unary and cumulative resources
first/last branching scheme
search visualization

Constraint Satisfaction for Planning and Scheduling 82

SummarySummary
Basic constraint satisfaction framework:

local consistency connecting filtering algorithms
for individual constraints
search resolves remaining disjunctions

Problem solving:
declarative modeling of problems as a CSP
dedicated algorithms encoded in constraints
special search strategies

